Researchers thought they knew when rabbits were tamed. An often-cited tale holds that monks in Southern France domesticated rabbits after Pope Gregory issued a proclamation in A.D. 600 that fetal rabbits, called laurices, are fish and therefore can be eaten during Lent.
There’s just one problem: The story isn’t true. Not only does the legend offer little logic for rabbits being fish, but the proclamation itself is bogus, according to a new study of rabbit domestication. “Pope Gregory never said anything about rabbits or laurices, and there is no evidence they were ever considered ‘fish,’” says Evan Irving-Pease, an archaeologist at the University of Oxford.
He and his colleagues discovered that scientists had mixed up Pope Gregory with St. Gregory of Tours. St. Gregory made a passing reference to a man named Roccolenus who in “the days of holy Lent … often ate young rabbits.” The misattribution somehow led to the story of rabbits’ domestication.
What’s more, DNA evidence can’t narrow rabbit domestication to that time period, Irving-Pease and colleagues report February 14 in Trends in Ecology and Evolution. Rabbit domestication wasn’t a single event, but a process with no distinct beginning, the researchers say. For similar reasons, scientists have found it difficult to pinpoint when and where other animals were first domesticated, too (SN: 7/8/17, p. 20). Geneticist Leif Andersson of Uppsala University in Sweden agrees that genetic data can’t prove rabbit domestication happened around 600. But he says “it is also impossible to exclude that domestication of rabbits happened around that time period.”
Domestication practices were well known by then, Andersson says, and it’s possible that French monks or farmers in Southern France with a taste for rabbit meat made an effort to round up bunnies that eventually became the founding population for the domestic rabbit.
Ancient DNA from old rabbit bones may one day help settle the debate.
An amateur astronomer caught a supernova on camera during the explosion’s earliest moments, giving physicists a glimpse of a long-sought phase of stellar death.
Víctor Buso spotted the supernova from his rooftop observatory in Rosario, Argentina, on September 20, 2016, when he aimed his telescope straight overhead at spiral galaxy NGC 613 to test a new camera. To avoid letting in too much light from the city sky — Rosario is a city of about 1.2 million people — he took a series of about 100 images that were each exposed for 20 seconds, spanning about an hour and a half. Over the last half-hour of Buso’s observations, the supernova appeared and then doubled in brightness. In 2013, astronomers spotted a supernova within hours of its explosion (SN Online: 2/13/17), but this is one of the first to be spotted before it exploded.
Because there is no way to predict when and where a supernova will go off, this sort of observation is extremely rare, says astrophysicist Melina Bersten of the National University of La Plata in Argentina, who reports details of the supernova in the Feb. 22 Nature. “This is completely unusual, and was something that many people were searching for around the world without success,” Bersten says. “It was incredible.”
Bersten and her colleagues analyzed the light from the supernova and found that it matches models of the first phase of a supernova called the shock breakout phase, in which a shock wave from a massive star’s collapse ricochets back from the star’s core and pushes stellar material outward.
Literally. The Entomological Society of America is updating its master list of insect names to reflect decades of genetic and other evidence that termites belong in the cockroach order, called Blattodea.
As of February 15, “it’s official … that termites no longer have their own order,” says Mike Merchant of Texas A&M University in College Station, chair of the organization’s common names committee. Now all termites on the list are being recategorized. The demotion brings to mind Pluto getting kicked off the roster of planets, says termite biologist Paul Eggleton of the Natural History Museum in London. He does not, however, expect a galactic outpouring of heartbreak and protest over the termite downgrade. Among specialists, discussions of termites as a form of roaches go back at least to 1934, when researchers reported that several groups of microbes that digest wood in termite guts live in some wood-eating cockroaches too.
Once biologists figured out how to use DNA to work out genealogical relationships, evidence began to grow that termites had evolved as a branch on the many-limbed family tree of cockroaches. In 2007, Eggleton and two museum colleagues used genetic evidence from an unusually broad sampling of species to publish a new tree of these insects (SN: 5/19/07, p. 318). Titled “Death of an order,” the study placed termites on the tree near a Cryptocercus cockroach.
Cryptocercus roaches live in almost termitelike style in the Appalachian Mountains, not too far from chemical ecologist and cockroach fan Coby Schal at North Carolina State University in Raleigh. Monogamous pairs of Cryptocercus roaches eat tunnels in wood and raise young there. The offspring feed on anal secretions from their parents, which provide both nutrition and starter doses of the wood-digesting gut microbes that will eventually let the youngsters eat their way into homes of their own. Termites are “nothing but social cockroaches,” Schal says. Various roaches have some form of social life, but termites go to extremes. They’re eusocial, with just a few individuals in colonies doing all of the reproducing. In extreme examples, Macrotermes colonies can grow to 3 million individuals with only one queen and one king.
After several years of debate, the common names committee of the American entomologists’ organization voted it was time to switch to the new view of termites. At a February meeting of the society board, there was no objection. The common names of individual termite species, of course, will remain as something-something “termite.”
Considering whether to demote a whole order of insects is an uncommon problem, says Whitney Cranshaw of Colorado State University in Fort Collins, a longtime member of the society’s naming committee. “Probably some of us, including myself, didn’t want to make the change because we liked it the way it was,” he says. Termites and cockroaches as separate orders were easy to memorize for the undergraduates he teaches. Yet, he voted yes. “It’s what’s right.”
Two human mummies housed at the British Museum in London for more than a century boast the world’s oldest known — and longest hidden — tattoos of figures and designs, a new investigation finds. These people lived in Egypt at or shortly before the rise of the first pharaoh around 5,100 years ago.
Radiocarbon analyses of hairs from the mummies date the bodies to between 3351 B.C. and 3017 B.C., says a team led by Egyptologist Renée Friedman of the University of Oxford and bioarchaeologist Daniel Antoine of the British Museum in London. Infrared photography revealed that smudges on a male mummy’s upper right arm depict a wild bull and a Barbary sheep, while a female mummy bears four S-shaped patterns on her right shoulder and a line with bent ends on her right arm. These animals and figures appear in Egyptian art from the same period, the researchers report online March 1 in the Journal of Archaeological Science. Both sets of tattoos — which consist of a carbon-based pigment, possibly soot — may have symbolized power, social status or knowledge of cult activities, but their precise meanings are unclear. The two were the only mummies found with tattoos, out of seven mummies originally buried at a southern Egyptian site and now held at the British Museum. All of the bodies had been preserved by the desert’s dry heat.
The tattooed Egyptian mummies are approximately as old as Ötzi the Iceman. The mummified man found in the Italian Alps has 61 dark lines tattooed on his limbs and torso, but no pictures or designs (SN: 1/23/16, p. 5). Some of the Iceman’s tattoos covered areas of joint disease and may have been intended as treatments. CT scans of the two Egyptian mummies found no signs of bone disease near or below tattoos.
A new analysis is shedding light on drought in Mongolia, both past and future.
By studying the rings of semifossilized trees, researchers constructed a climate history for the semiarid Asian nation spanning the last 2,060 years — going 1,000 years further back than previous studies.
It was suspected that a harsh drought from about 2000 to 2010 that killed tens of thousands of livestock was unprecedented in the region’s history and primarily the result of human-caused climate change. But the tree ring data show that the dry spell, while rare in its severity, was not outside the realm of natural climate variability, researchers report online March 14 in Science Advances. “This is a part of the world where we don’t know about the past climate,” says Park Williams, a bioclimatologist at Columbia University’s Lamont-Doherty Earth Observatory in Palisades, N.Y., who was not involved with the study. “Having this record is a great resource for trying to understand past droughts in the region.”
In recent years, many studies have sought to unsnarl the role of anthropogenic climate change from natural variability on extreme weather events (SN: 1/20/18, p. 6). Such work is necessary for more accurately predicting future climate trends and helping governments prepare for the most severe scenarios, says study coauthor Amy Hessl, a physical geographer at West Virginia University in Morgantown. This is especially true in countries like Mongolia that lack certain infrastructure, such as enough water reservoirs, to ease the impact of events like prolonged drought.
Hessl and her colleagues studied tree rings in hundreds of samples of Siberian pines, well-preserved by Mongolia’s naturally dry climate. A ring’s width indicates how much the tree grew in a year. In wet years, the rings are wider; in dry years, skinnier. The recent dry spell was the severest in recorded history. But the rings showed that an even more severe drought took place around the year 800, long before anthropogenic climate change began.
Still, computer simulations suggest that about a third of the recent drought’s severity could have been caused by elevated temperatures linked to climate change, the researchers found. The finding is consistent with studies on how climate change has affected other recent droughts in South Africa and California.
Using computer simulations, Hessl and her colleagues conclude that droughts in coming decades may not be any worse than those seen in Mongolia’s past. The team predicts that as global temperatures rise over the next century, Mongolia will first become drier, then wetter. Increased heat initially will dry out the plains. But at a certain point, hot air holds more moisture, leading to increased precipitation.
Those climate patterns will likely guide how Mongolia develops, Hessl says, because they have in the past. In 2014, she and colleagues published a paper detailing how a 15-year period of unprecedented temperate and rainy conditions in 13th century Mongolia may have led to the rise of Genghis Khan (SN Online: 3/10/14).
After some initial waffling, President Trump signed a budget bill March 23 that lays out spending details for the rest of fiscal year 2018, which goes through September. The $1.3-trillion spending deal boosts funding for nearly all science agencies, avoiding cuts the White House had proposed.
These increases stem largely from February’s budget deal, which raised caps on discretionary spending. The National Institutes of Health, which got a $3 billion bump over the 2017 level, comes out especially well, as does the Department of Energy’s Office of Science. It receives an $868 million boost, a 16 percent increase. Climate science research and programs across several agencies also avoided big cuts that the administration had proposed. The one outlier: the Environmental Protection Agency. At about $8.1 billion, its budget remains flat at the 2017 level.
Here are a few details that stood out to us.
NIH NIH gets an extra $414 million for Alzheimer’s disease research, along with $400 million for the BRAIN Initiative, a research project announced by President Obama in 2013 that aims to improve our understanding of the human brain. DOE Office of Science Trump had proposed eliminating the Advanced Research Projects Agency-Energy, which funds research into long-shot but potentially high-reward projects. But the bill allocates an additional $47 million to the agency, a resounding rejection of the administration’s request.
NASA The Wide-Field Infrared Survey Telescope, or WFIRST, is a proposed mission to study, in part, planets orbiting stars outside the solar system. It was recommended by the most recent decadal survey for astrophysics and remains one of NASA’s top astrophysics priorities after the James Webb Space Telescope. Trump has proposed canceling WFIRST, but the spending package includes $150 million for the telescope. Four earth science programs that Trump had targeted for elimination were also funded.
CDC The agreement includes wording clarifying that the Centers for Disease Control and Prevention isn’t barred from studying gun violence under a 1996 amendment. The CDC has shied away from such research since that time. On Twitter, some celebrated the news, but others hailed it as a partial victory. Megan Ranney, an emergency physician and researcher at Brown University in Providence, R.I., who studies firearm injuries, tweeted the “announcement changes nothing. The issue has been, and continues to be, lack of appropriations for research.”
EPA The agency’s overall budget remains flat as do projects with EPA’s Office of Science & Technology. Although not research related, the agency’s regulatory programs are cut by $23.5 million. The bill includes wording that prohibits the regulation of lead content in ammunition and fishing tackle and exempting livestock producers from EPA greenhouse gas regulations.
USGS The bill includes $23 million for ShakeAlert, an earthquake early warning system on the West Coast that could be rolled out as early as October, another project that had been facing elimination. All eight of the U.S. Geological Survey’s climate science centers are funded in the agreement. The administration had proposed cutting their numbers in half, to four.
It’s tough to be a frog once a killer skin fungus moves in. But, in Panama, the amphibians might be fighting back, researchers propose.
More than a decade ago, an amphibian-killing chytrid fungus nicknamed Bd swept through the country. Now some frog species that had nearly vanished from three regions are growing easier to spot again. But tests of the pathogen find no signs that it is weakening, says disease ecologist Jamie Voyles at the University of Nevada, Reno. With the fungus as dangerous as ever, frogs becoming resistant to the pathogen might be enabling the recovery, Voyles and her colleagues report in the March 30 Science. Despite any glimmer of hope, it’s too early to celebrate frog recovery, protests ecologist Karen Lips at the University of Maryland in College Park. She doesn’t doubt that researchers have found frogs in the devastated regions, but wants more rigorous monitoring before talking population trends.
The three areas in the study have special resonance. They’re where Lips and other scientists set up a disaster watch as they realized that Bd, short for Batrachochytrium dendrobatidis, was sweeping through Central America, killing many amphibians in its path. As the deadly wave approached, the researchers collected data and living animals in the hope they would help in before-and-after studies. The fungus attacked Lips’ site, El Copé, in 2004 and the other two sites in 2006 and 2007.
Voyles was working at El Copé as a graduate student when Bd arrived. She remembers the abundance of sick and dying animals, and the task of collecting the dead. “That was shocking, really — there’s just no other word for it.”
Using archived, frozen samples of the fungus from those sites, Voyles and colleagues present the first comparison of Bd as it was in 2004 versus in 2012 to 2013, when amphibian communities showed signs of recovering. At first, Voyles suspected that the pathogen was growing less dangerous. Bd attacks a wide range of hosts but evolutionarily speaking, pathogens don’t persist if they drive too many of their hosts extinct. A waning fungal menace could have explained how nine frog species that had almost disappeared in the area were now easier to spot. But the pathogen appears as lethal as ever, she and her colleagues report. Compared with the older versions, the more recent fungus samples grew and reproduced at about the same speeds, and inhibited immune cells at about the same rates. All fungi killed the test frogs of two species.
“That’s an important result,” says evolutionary ecologist James Collins of Arizona State University in Tempe. Biologists who study the interplay of pathogen and host often ask how the two change in relation to one another over time. But having real data on the relationship is much rarer. Also important, he says, is recognizing that “many species at the Panama sites are still missing, so wholesale recovery isn’t occurring.” To explain the encouraging cases, the researchers propose that in some species, frog skin secretions may be getting better at repelling the fungus. For wild animals of six amphibian species, secretions from pre-disease days were worse at inhibiting fungal growth in a lab test than secretions from the same species at sites that the fungus had hit. In another test, secretions from wild variable harlequin frogs (Atelopus varius) were about eight times as effective at inhibiting the fungus as were those from zoo animals descended from frogs collected before Bd reached their site.
Of the many amphibian populations that Bd savaged around the world (SN: 3/5/16, p. 14), a few have bounced back in numbers. Sierra Nevada yellow-legged frogs now abound again in the California mountains, ecologist Vance Vredenburg of San Francisco State University points out. Yet these animals are descendants of a worryingly tiny percentage of the original, diverse population. Despite rebounds, attacks by deadly fungi are still “a really big deal,” he says.
NASA is stepping up its search for planets outside our solar system. Its next exoplanet hunting telescope, the Transiting Exoplanet Survey Satellite (TESS), is due to launch from Cape Canaveral on the evening of April 16.
Following the Kepler space telescope’s discovery of more than 5,000 possible exoplanets since 2009, TESS will continue the galactic census — flagging more planetary candidates for further study.
Astronomers expect TESS to find about 20,000 planets in its first two years in operation, focusing on nearby, bright stars that will be easy for other telescopes to investigate later. About 500 of those expected exoplanets would be less than twice the size of Earth — and therefore may be good places to look for life. The TESS mission is “a whole new opening for exoplanet studies,” MIT astronomer Sara Seager, TESS’ deputy science director, said during a news conference describing the upcoming launch. TESS will be the first NASA science mission launched on the SpaceX Falcon 9 rocket. Once in orbit, the spacecraft will trace an unusual, elliptical path between Earth and the moon that will enable it to observe at least 85 percent of the sky — 350 times as much sky as Kepler saw. Most of the planets found by Kepler orbit stars 1,000 light-years away or farther. TESS will focus on 200,000 stars that are a few hundred light-years away at most, and shine between 30 to 100 times brighter on average than Kepler’s.
The brighter the star, the easier it is to determine its planet’s characteristics, such as its mass and whether it has an atmosphere, Seager says. “Photons are our currency — the more, the better,” she says.
That follow-up will help TESS avoid some of Kepler’s pitfalls. Because Kepler’s stars were so far and so dim, some of its planet candidates were confirmed as actual planets only by statistics rather than by other telescopes. And not all those confirmations may stick. A recent paper posted at arXiv.org showed that Kepler 452b, an Earth-sized planet that orbits a sunlike star at the same distance Earth orbits the sun, may be a mirage (SN: 8/22/15, p. 16). Many of TESS’ planets won’t face the same uncertainty. But the way TESS will search for exoplanets is the same as Kepler: The satellite will watch stars for signs of dimming, which can indicate that a planet is transiting, or crossing in front of, the star. Measuring how much starlight is blocked can tell astronomers the size of the planet.
Once TESS finds a planet, astronomers will need more information to understand its qualities, such as whether it’s rocky or gassy (SN Online: 6/19/17). For that, other telescopes will follow up. Ground-based telescopes will measure the gravitational tug of a planet on its host star to learn the planet’s density, which is a clue to its composition. Astronomers plan to measure masses for at least 50 TESS planets that are smaller than Neptune in the hopes that many of them will have rocky, and therefore potentially habitable, surfaces. NASA’s James Webb Space Telescope, now scheduled to launch in 2020, will then check some of those planets for signs of life (SN: 4/30/16, p. 32).
“This is one of the major questions that TESS is intended to answer: Where will we be pointing Webb?” said the mission’s principal investigator, MIT astronomer George Ricker, at the press conference. Webb will peer at the starlight filtering through planetary atmospheres to try to detect molecules that could be produced by something living on the surface.
It will take a few months for TESS to swing into its regular orbit before it begins collecting data. At that point, it will be able to use the moon’s gravity to stabilize itself for decades in orbit without using extra fuel. The mission is set to last two years, but could continue taking data almost indefinitely.
“TESS is not going to be limited by any expendable or other aspects,” Ricker said. “It will be basically limited by how long NASA has the patience to fund the mission.”
There’s more subtlety than humans have realized in dropping out of the sky so fast your tail feathers sing.
Male Costa’s hummingbirds in western North America are masters of the tail-screaming courtship plunge. Acoustic cameras recorded these repeated stunts and revealed that, as the male whooshes down, he twists half of his tail sideways, says ornithologist Christopher J. Clark of the University of California, Riverside. That twist aims the prolonged feather whistle toward the female he’s swooping by, Clark and his colleague Emily Mistick of the University of British Colombia in Vancouver report April 12 in Current Biology. The recordings, which use microphone arrays to localize a sound on video, shed light on another quirk of Calypte costae’s performance. While male hummingbirds of other species swoop over the female during courtship dives, the shimmery purple-faced Costa’s zoom by on the side.
Extra distance in the side flyby minimizes the Doppler effect on the feather sound. That effect may be familiar from the EEEEEEooooo of an ambulance’s siren that sounds high-pitched as the vehicle approaches and then seems to lower after it passes. Masking the Doppler effect could make it harder for a female to pick out the fastest divers, although researchers haven’t shown how these females perceive speed or whether it matters much to them.
The diving sounds, made from the flutter of the outermost tail feather, also seem similar to the males’ vocalizations, Clark says. So he wonders if females find something in both especially seductive.
No fantasy world is complete without a fire-breathing dragon. SpaceX founder Elon Musk even wants to make a cyborg version a reality, or so he tweeted April 25. But if someone was going to make a dragon happen, how would it get its flame? Nature, it seems, has all the parts a dragon needs to set the world on fire, no flamethrower required. The creature just needs a few chemicals, some microbes — and maybe tips from a tiny desert fish.
Fire has three basic needs: something to ignite the blaze, fuel to keep it burning and oxygen, which interacts with the fuel as it burns. That last ingredient is the easiest to find. Oxygen makes up 21 percent of Earth’s atmosphere. The bigger challenges are sparking and fueling the flame. All it takes to strike a spark is flint and steel, notes Frank van Breukelen, a biologist at the University of Nevada, Las Vegas. If a dragon had an organ like a bird’s gizzard, it could store swallowed rocks. In birds, those rocks help get around a lack of teeth, allowing them to break down tough foods. Inside a dragon, swallowed flint might rub against some steel, sparking a flame. “Maybe what you have is sort of scales that are flintlike and click together,” van Breukelen says. If the spark was close enough to a very sensitive fuel, that might be enough to ignite it. But some chemicals don’t need that initial spark. Pyrophoric molecules burst into flame the instant they contact air. Consider the element iridium, says Raychelle Burks, a chemist at St. Edwards University in Austin, Texas. It burns different colors when it becomes part of various molecules. One of them burns a warm orange or red. Another burns a violet-blue. (That’s one way to get the blue flame of the zombie ice dragon in George R.R. Martin’s Game of Thrones series.) Unfortunately, iridium isn’t common, especially in biology. “There are a lot of cool elements on the periodic table, but [living things] only use a few,” Burks explains.
There are other pyrophoric chemicals that a dragon might find a little closer to home, notes Matthew Hartings, a chemist at American University in Washington, D.C. Assume that dragons like caves, he begins. “If you’re living amongst a bunch of rocks, you’ll have access to a high amount of iron.”
Iron can react with another chemical, hydrogen sulfide. This is a flammable gas that smells like rotten eggs, and gives Uranus its new signature scent. It is found in crude oil. When hydrogen sulfide and iron get together — in a rusty oil pipe, for example — the result is iron sulfide. Combine it with air and you’ve got an explosive mix. Iron sulfide is sometimes the culprit when gas pipelines or tanks blow up.
Another explosive option comes from Anne McCaffrey’s series The Dragonriders of Pern. McCaffrey describes her dragons chewing on rocks containing phosphine, a chemical made of one phosphorus atom and three hydrogen atoms. In gas form, phosphine is extremely flammable and explodes on contact with oxygen. It’s also very toxic: Just seven drops of its liquid form can kill someone.
Burning burps Fictional dragons often spout flaming gas. But a gas would present problems, Hartings says. Gas, he notes, expands to fill available space. To keep it contained, a dragon would have to keep that gas under pressure.
Chemicals like phosphine, therefore, aren’t the perfect dragon-fire solution, Hartings says. The boiling point for phosphine is -84° Celsius (-120° Fahrenheit). At room (or dragon breath) temperature, it’s a gas. “You’d have to really compress it,” he says, to make it a liquid that a dragon could store and use.
Also, Hartings notes, gases are difficult to control. If a dragon blew some fiery gas into the wind, the flames might wash back on the creature and singe its face. “You have a much better chance of controlling your flame spray if you’re pushing liquid rather than a gas,” he explains.
A liquid also would help avoid self-burning, Hartings notes. The liquid with its flammable gas would ignite as soon as it hit air. Speed is key. “As long as you are shooting it out fast enough, [the] particles don’t hit the air until they are far enough away from your face,” he notes.
A combination of liquid and gas might work even better, Burks suggests. In an aerosol spray, tiny liquid droplets are suspended in a pressurized gas, which spurts out when it is released. If a dragon were to shoot an aerosol spray, it could look like a gas, with some of the properties of a liquid. “In a fine aerosol spray it would look like the dragon is spraying fire,” Burks notes. The aerosol would spread out, she says, “and the minute it hits air — kaboom!”
Something fiery, something fishy Plenty of liquids in nature will burn. Living things already produce two of these that might work for a dragon: ethanol and methanol. Both are alcohols often burned as fuels.
“Certainly, we know that yeast makes ethanol,” Hartings says. These single-celled fungi transform sugars into alcohol. That’s why they’re used to brew beer and make other alcoholic beverages. A dragon with a bellyful of yeast is not as silly as it might appear. Yeast are part of the microbial community that lives on and in people and other animals.
Methanol first requires methane. Ruminants — including cows, goats, giraffes and deer — make methane during digestion. Certain bacteria can turn methane into methanol, Hartings notes. A dragon that got enough fiber in its diet to make methane could pass that gas on to its bacterial buddies, who would convert it into methanol. But those bacterial coworkers might not even be needed. The Devil’s Hole pupfish doesn’t bother with them. The fish are a tiny, incredibly rare species found in Devil’s Hole — a single, naturally heated pool in Nevada. This fish can whip up its own whiskey in a pinch, van Breukelen and his colleagues have shown. Temperatures in Devil’s Hole reach 33 °C (91 °F). There is very little oxygen in the water to start with. When it gets hot, the oxygen levels drop even lower — too low for the fish to breathe. So pupfish stop using oxygen. Instead, they produce energy anaerobically, no oxygen required. In the process, their bodies make ethanol.
The fish produce 7.3 times more ethanol than fish living in cooler water, van Bruekelen and his colleagues reported in 2015 in the Journal of Experimental Biology.
A dragon might be able to produce ethanol under similar circumstances. However, van Breukelen says, it’s not quite so simple. “I don’t think there’s a way to keep ethanol. I don’t think you could store it,” he says. The reason: It seeps through everything. Ethanol, he explains “goes right through membranes.” Those include the membranes that surround cells and organs. When pupfish produce ethanol, the chemical ends up throughout the fish. It would not pool as a concentrate in some pouch or organ. So any dragon that made ethanol would have trouble storing enough to get a decent flame going.
The pupfish won’t be setting the world on fire — nor will dragons. One is a tiny fish, and the other isn’t real. But if Musk wants to figure out how to make his cyborg dragon light up the world, he doesn’t need to look to fossil fuels. Nature has him covered.