Chile: Chile Week across China enhances communication

The opening ceremony of the 8th Chile Week in Beijing kicked off on Monday. About 200 people attended the ceremony, including Chinese and Chilean representatives from associations, importers and exporters, and media. 

Afterward, the annual China-Chile Business Council Meeting was successfully held, at which the President of Chile, Gabriel Boric, encouraged Chinese and Chilean enterprises to enhance understanding and communication, with hopes that more Chinese enterprises make their debut in Chile to research the opportunities and invest in the country.

The Beijing leg of Chile Week boasted both online and offline sessions to showcase Chilean products. Many Chilean enterprises had their high-quality products on display for audiences during the offline business networking "encuentro." 

During the livestream broadcast on Douyin, a Chile Week live special sale was held to allow Chinese friends unable to be present offline to buy Chilean goods.

Chile Week is an annual event that serves as a platform for exchanges and interaction between China and Chile on all fronts, as well as an excellent opportunity to strengthen ties between the two countries in agribusiness, seafood, mining, energy, and other strategic sectors.

The first leg of the 8th Chile Week was inaugurated in Shenzhen on October 14, followed by the Chengdu stop on October 15, and the Shanghai leg from Thursday to Friday.

Hope China-Australia dialogue can achieve results beyond expectations: Global Times editorial

The 7th China-Australia High Level Dialogue will be held in Beijing on September 7. This is not just a momentous event between China and Australia, but also a reflection of the East-West relationship as a whole. As a 1.5-track high-level dialogue initiated in 2014, this exchange is a thermometer for China-Australia relations. The interruption of this dialogue in 2020 was widely regarded as a prominent sign of the sharp decline in bilateral relations. After the Albanese government came to power and began adjusting its policy toward China, China-Australia relations rebounded. The restart of this high-level dialogue is seen as a sign of further warming of China-Australia relations. 

This is the outcome that we are all hoping for. If China and Australia can effectively manage their disagreements while maintaining and strengthening mutually beneficial cooperation in the current international circumstances, China can do the same with other Western countries. From this vantage point, China-Australia ties have far-reaching ramifications beyond bilateral relations.

The ups and downs of China-Australia relations, from initially positive to being impacted by external circumstances and the growth of radical anti-China forces within Australia, to a more pragmatic adjustment by the Labor Party government, are extremely representative. It is obvious that Australia is primarily to blame for this. Therefore, when the Australian government changed, China-Australia relations ushered in an opportunity for a turnaround. The detours taken by China-Australia relations serve as a lesson not only for Australia but also for other Western countries in how to handle their relations with China.
 It is essential to point out that most people who predict that China-Australia relations will improve are either Australians or members of Western public opinion. Although there is some optimism in China, it is cautious and constrained because expectations there are generally modest. This difference reflects the instability of trust between the two countries, and a "warming" without trust is difficult to sustain. We hope that at this moment of "restarting" bilateral relations, the Australian side should seriously listen to the thoughts of China, which is important for truly promoting the warming of bilateral relations.

From the perspective of the size and the composition of the Australian delegation, it is not hard to feel how much importance Canberra has attached to the restart of the dialogue. The large scale of personnel is uncommon compared to previous dialogues. The delegation is composed of representatives from both political parties, including former Labor trade minister Craig Emerson and former Liberal foreign affairs minister Julie Bishop, demonstrating the "political support" of both parties for this dialogue. The delegation members come from various sectors such as businesses, government, academia and media, all are familiar with China-Australia relations. We hope that the restart of this high-level dialogue also signifies the comprehensive restoration of the China-Australia strategic dialogue.

It is easier for things to slide downward than improve, the latter requires greater effort. It is the same in relations between countries. If we describe China-Australia ties as a student who started with score 80, yet the score has fallen to 40, we can say that the score improved a little now. Yet it is not enough. It requires more joint efforts from both China and Australia. It specifically requires Australia to overcome internal and external pressures to the greatest extent. Frankly speaking, Australia has not done enough in this regard and some mistakes are continuing.

Some Western countries, including the US, have repeatedly emphasized that they will not "decouple" from China while praising Australia as an "example" of "resisting Chinese coercion." The news of the high-level dialogue between China and Australia has received a lukewarm response from some Western media, which instead have been focusing on the country's new strategy to boost trade with Southeast Asia, proposed by Prime Minister Anthony Albanese at the ASEAN Summit, claiming that China's doubts are growing about the strategy. Australia has not withdrawn from the US strategy of containing China, nor has it shown such intentions. These pieces of information reflect the complexity of China-Australia relations.

One reality that both China and Australia need to face is that the urgent task of the current China-Australia relationship is to quickly reach a passing line. We have spoken enough to Australia in the past two years, but how much Australia can take in is not for us to decide. However, we have received Australia's sincerity in wanting to strengthen communication with China and will respond with goodwill. We hope that the high-level dialogue between China and Australia can achieve results beyond expectations.

Arab world sees multi-alignment as the norm

It is becoming increasingly clear that the Arab region and world are already in the post-West and post-US era. The world order has been rapidly changing and multipolarity is becoming more and more a reality.

The rising power and growing influence of the developing nations, spearheaded by China, are shifting the world's center of gravity to the East and the South. The recent BRICS and G20 summits have amplified the voice of the Global Majority, more visibly showing the global power redistribution. The final communiques of both summits have reinforced the perception that no one single country or bloc of countries can dictate the terms of global consensus. Although the two summits' communiques used different terms, they both acknowledged the need to reform the global governance architecture, including Multilateral Development Banks (MDBs), and allow a larger representation for marginalized regions such as Africa. In both declarations, the Global South's perspective on the Ukraine conflict has prevailed. 

Because of this grand rebalancing, the African Union (AU) has been added as a permanent member of the G20. This is also one important reason BRICS has been expanded to include additional six countries, three of which are from the Arab world.  Just as the G20 expansion is not against anybody, but an attempt to make the grouping more representative of current global realities, the BRICS expansion is not against anybody, but an attempt to create more momentum behind the efforts to reform the global governance system so that it is more inclusive, equitable and democratic.

The Arabs are demonstrating their strategic autonomy by joining various partnerships established by seemingly opposing camps in the current intensifying great power rivalry. The Arab nations are joining BRICS, the Global South's leading platform, while simultaneously partnering with the West on India-Middle East-Europe Economic Corridor (IMEC), a project that has been announced recently on G20 sidelines. Just as the Arabs' decision to join BRICS was not aimed against the West, but was based on national strategic objectives, their recent decision to sign Memorandum of Understanding (MoU) for the IMEC was not aimed against China's Belt and Road Initiative (BRI).  

There is an important difference between the BRI and the IMEC. The IMEC is an idea that is still being explored; it does not have concretely defined national commitments, scope, capital requirements and roles. On the other hand, the BRI is a mature program, which has proven its worth, bringing tangible benefits to its participants. The BRI is regaining momentum, thanks to serious contributions from China and its committed BRI partners; many BRI summits and events are held this year to mark the initiative's 10th anniversary. Regardless of who initiated them and how they will evolve in the future, the BRI and IMEC should be celebrated, not politicized or weaponized, because they are meant to enhance connectivity and facilitate global trade. How much positive impact they generate should be the only criterion for assessing those initiatives.

Multi-alignment and minilateralism are becoming the norm in the current fast-changing world. It is unwise to narrow-mindedly define the world in binary terms, "democracy versus authoritarianism" or "the West versus the rest". In the current fluid world order, most of the world, including the Arab region, is open to all kinds of partnerships and platforms that can serve their interests. India, for example, is an important member of BRICS and Shanghai Cooperation Organisation (SCO); at the same time, it is a member of the Quad, the Quadrilateral Security Dialogue (QSD). Last August, India, Brazil and South Africa, the three "democratic members" of the BRICS, participated in the BRICS summit, which included China and Russia; less than three weeks later, the same three countries had a joint meeting with the US during the G20 summit.  

The Arabs do not view their relations through an ideological prism; they are pragmatic, seeking partnerships based on mutual trust, respect, and benefit. The world is quickly adjusting to the reality that no one single country or bloc of countries can dictate the terms of multilateral partnerships and global governance. The Arabs are already adapting their regional and international behavior to this reality; no external pressure can change this fact.

The Arabs are joining different groups and platforms as equal partners, not as subordinates. Throughout their history and by virtue of their central geography, the Arabs have thrived on establishing relations with various regions and economic centers.  Just like the Chinese, the Arabs are people of trade; they have been trading with each other and with others for thousands of years. As traders, it is natural and imperative for their success to build trust and win-win relations with the world. It is no wonder Arab-China trade is breaking records; last year, it reached more than $400 billion.

The global stage is becoming less welcoming to those who want to bring back hegemony and force others into subordinate positions. Those who think they should have superiority to all others economically, politically, culturally or otherwise, are using outdated mental models of a bygone era. Their sense of insecurity and lack of confidence about their own place in the world are pushing them to view their relations with others through the destructive zero-sum perspective. However, time, history, demographics and numbers are on the side of those who are working toward a multipolar world and those who are creating a multipolar Middle East. The two evolving orders are positively reinforcing each other.  

The Arab world is going through a transition period, steered primarily by the Arabs themselves.  The changes happening in the Arab world today do not represent a turning point or an abrupt regional transformation; it is an expected phase of an organic evolution. The region has been evolving since the disintegration of the Ottoman Empire, passing through European imperialism, surviving the US hegemony, and now arriving at a crucial historic juncture.

Just like the Chinese, Africans, Indians, Russians and most other peoples, the Arabs prefer a world that is multipolar where multilateralism can thrive, and unilateralism can be restricted. The Arabs are too wise and too strategic to pick sides; their neutral position on the Ukraine conflict and their positively expanding partnerships with different power centers illustrate their sophisticated understanding of the current tectonic power shifts. 

The Arabs recognize that this is the era of active diplomacy and dynamic partnerships.  For them, the world is becoming more complex, requiring agility and versatility; there is no place for binary or black-and-white thinking. After twenty years of wars and conflicts imposed on the region, the Arabs are regaining self-confidence and working strategically to secure their future in the emerging new world. They have developed enough human capital and technocratic capacity to be able to manage the delicate transition. The next couple of decades will be critically important for the Arabs to restore their place in the world. 

They should continue their wise policy of being friends to all and enemies to none.  They should make full use of their growing agency to achieve their national interests while fiercely protecting their strategic autonomy. They must exploit the opportunities and tackle the challenges provided by the multi-polarizing world. They should continue building indigenous capabilities and diversifying global partnerships.

The Arabs are at a critical crossroads in their history; they must unite and rally behind one common vision for their future and place in the world.

Removal of McCarthy signifies further polarization of American politics

On October 3, the US House of Representatives voted to oust Speaker Kevin McCarthy, making him the first Speaker of the House in US history to be voted out, and also the one with the shortest tenure. What's crucial is that it marks the deepening division within the Republican Party and the further polarization between the two major political parties in the US.

The state of the US politics is essentially fragmented, with significant changes in the core voter demographics of both parties and the emergence of prominent extremist forces. Within the Republican Party, extreme factions like the Freedom Caucus have gained prominence since the era of Donald Trump. This political fragmentation has led to confusion and internal strife within both parties, as explained by Diao Daming, a professor at the Renmin University of China in Beijing. According to Diao, this event is a result of political decline and the failure of governance. Instead of addressing critical issues such as the debt ceiling and government shutdown, both parties prioritized maximizing their internal interests.

Following this turmoil, the space for compromise between the two parties is expected to shrink further. This phenomenon is driven by both technical and strategic reasons, said Yang Xiyu, a senior research fellow at the China Institute of International Studies. Faced with the budget dispute between the two parties, McCarthy made a compromise that did not sit well with the hardliners within his party. His removal essentially prevents future Speakers of the House, who are also leaders of the Republican Party, from following in McCarthy's footsteps.

From a strategic perspective, the divisions between the two parties extend beyond specific budgetary issues to affect US' national development. The different budget proposals put forward by the Democratic and Republican parties reflect their distinct visions for the country. With the turmoil within the Republican Party, it has become increasingly difficult for both parties to reach compromises.

Yang pointed out that this upheaval is not merely about reaching or failing to reach compromises; it fundamentally reflects a disconnect between the current design of the US democratic system and the rapidly changing society. This shift in leadership within the US House of Representatives was triggered by the budget issue, but it is also rooted in the profound divisions between the two parties regarding the direction of the nation. However, the functioning of this political system is becoming increasingly incompatible with the deeply divided American society.

Presently, the US is in a state of political extremism, with both major parties becoming more polarized. As political figures navigate the pressures of Washington, they must continuously rally their constituents. Consequently, voters from both parties are becoming more polarized, further exacerbating the division.

The US had long presented itself as a "beacon of democracy." However, with its domestic political turmoil, this myth has been shattered. This has led to increasing contradictions between the two major driving forces of US foreign policy—American interests and American values. The failure of the American democratic system domestically has raised questions about American values on the international stage. While the US has sought to incorporate these values into its foreign policy and promote them globally, it has also sparked growing conflicts. As a result, the US' international influence has declined, eroding international confidence in the so-called American values.

China's Tiangong space station launches second painting exhibition for teenagers on Chinese New Year's Eve

China's Tiangong space station launched the second Tiangong painting exhibition on Saturday, representing a special gift sent by the Shenzhou-15 mission astronauts at the Chinese space station to teenagers across the country during the Chinese New Year's Eve.

With the theme of “Painting a beautiful China, talking about good life,” this year’s exhibition displays 40 paintings from teenagers from 17 provinces, municipalities and autonomous regions as well as the Hong Kong and Macao special administrative regions.

In August 2022, Chinese astronauts Chen Dong, Liu Yang and Cai Xuzhe, who are members of the Shenzhou-14 crew, called on teenagers to send in works for the painting exhibition to be held at China’s space station. The activity received enthusiastic response from schools, parents and teenagers across the country, and more than 3,000 paintings were received from teenagers aged 5 to 18.

On November 29, 2022, the 40 outstanding works that were selected through expert review and online voting were taken with the Shenzhou-15 manned spaceship to enter the Chinese space station.

The works on display at the Chinese space station will return to the ground with the Shenzhou spacecraft later. The organizer will choose the time to hold a ground painting exhibition and invite award-winning teenagers and outstanding instructor representatives to watch the on-site rocket launch and conduct exchanges with astronauts.

The Tiangong painting exhibition has been held for two consecutive sessions so far, with the first held on January 1, 2022. 

2022 marked the 30th anniversary of the establishment and implementation of China’s manned spaceflight project and the year when the Chinese space station was fully completed. According to the schedule, there will also be more follow-up offline activities aimed at encouraging teenagers’ interests and enthusiasm in manned spaceflight this year.

Why sewage may hold the key to tracking diseases far beyond COVID-19

The future of disease tracking is going down the drain — literally. Flushed with success over detecting coronavirus in wastewater, and even specific variants of SARS-CoV-2, the virus that causes COVID-19, researchers are now eyeing our collective poop to monitor a wide variety of health threats.

Before the pandemic, wastewater surveillance was a smaller field, primarily focused on testing for drugs or mapping microbial ecosystems. But these researchers were tracking specific health threats in specific places — opioids in parts of Arizona, polio in Israel — and hadn’t quite realized the potential for national or global public health.
Then COVID-19 hit.

The pandemic triggered an “incredible acceleration” of wastewater science, says Adam Gushgari, an environmental engineer who before 2020 worked on testing wastewater for opioids. He now develops a range of wastewater surveillance projects for Eurofins Scientific, a global laboratory testing and research company headquartered in Luxembourg.

A subfield that was once a few handfuls of specialists has grown into more than enough scientists to pack a stadium, he says. And they come from a wide variety of fields — environmental science, analytical chemistry, microbiology, epidemiology and more — all collaborating to track the coronavirus, interpret the data and communicate results to the public. With other methods of monitoring COVID-19 on the decline, wastewater surveillance has become one of health experts’ primary sources for spotting new surges.

Hundreds of wastewater treatment plants across the United States are now part of COVID-19 testing programs, sending their data to the National Wastewater Surveillance System, or NWSS, a monitoring program launched in fall 2020 by the U.S. Centers for Disease Control and Prevention. Hundreds more such testing programs have launched globally, as tracked by the COVIDPoops19 dashboard run by researchers at the University of California, Merced.

In the last year, wastewater scientists have started to consider what else could be tracked through this new infrastructure. They’re looking at seasonal diseases like the flu, recently emerging diseases like bird flu and mpox, formerly called monkeypox, as well as drug-resistant pathogens like the fungus Candida auris. The scientists are even considering how to identify entirely new threats.

Wastewater surveillance will have health impacts “far broader than COVID,” predicts Amy Kirby, a health scientist at the CDC who leads NWSS.

But there are challenges getting from promise to possible. So far, such sewage surveillance has been mostly a proof of concept, confirming data from other tracking systems. Experts are still determining how data from our poop can actually inform policy; that’s true even for COVID-19, now the poster child for this monitoring. And they face public officials wary of its value and questions over whether, now that COVID-19 health emergencies have ended, the pipeline of funding will be cut off.

This monitoring will hopefully become “one of the technologies that really evolves post-pandemic to be here to stay,” says Mariana Matus, cofounder of Biobot Analytics, a company based in Cambridge, Mass., that has tested sewage for the CDC and many other health agencies. But for that to happen, the technology needs continued buy-in from governments, research institutions and the public, Matus and other scientists say.

How wastewater testing works
Wastewater-based epidemiology has a long history, tracing back at least to physician John Snow’s 1850s observations that cholera outbreaks in London were connected to contaminated water.
In the 1920s and ’30s, scientists began to take samples from sewage and study them in the lab, learning to isolate specific pathogens that cause disease. These early researchers focused on diseases that spread through contaminated water, such as polio and typhoid.

Today, automated machines typically retrieve sewage samples. The machines used to collect waste beneath maintenance hole covers are “like R2-D2 in terms of size” or smaller, says Erin Driver, an environmental engineer at Arizona State University in Tempe who works on collection methods.

Driver can plug this machine, or a larger version used for sampling at wastewater treatment plants, into a water pipe and program it to pull a small amount of sewage into an empty bottle at regular intervals, say, once an hour for 24 hours. She and colleagues are developing smaller versions of the automated sampler that could be better suited for more targeted sampling.

What happens in the lab to that bottle of waste depends on what scientists are testing for. To test for opioids and other chemicals, scientists might filter large particles out of the sample with a vacuum system, extract the specific chemicals that they want to test, then run the results through a spectrometer, an instrument that measures chemical concentrations by analyzing the light the chemicals give off.

To determine levels of SARS-CoV-2 or another virus, a scientist might separate liquid waste from solid waste with a centrifuge, isolate viral genetic material, and then test the results with a PCR machine, similar to testing someone’s nose swab. Or, if scientists want to know which SARS-CoV-2 variants are present, they can put the material through a machine that identifies a variety of genetic sequences.

Would the coronavirus even show up in waste?
In the panicked early days of the pandemic, an urgent basic question loomed. “Will this even work?” remembers Marlene Wolfe, an environmental microbiologist at Emory University in Atlanta. While polio is spread through fecal matter, there were early hints that the coronavirus mostly spreads through the air; scientists initially weren’t even sure that it would show up in sewage.

On the same day in 2020 that the San Francisco Bay Area went on lockdown, Wolfe and colleagues at Stanford University, where she was based at the time, got a grant to find out. The team was soon spending hours driving around the Bay Area to collect sewage samples, “navigating lockdown rules” and negotiating special permissions to use lab space, she says.

“We were anxiously waiting to see if our first samples would show a positive result for SARS-CoV-2,” Wolfe says.

Not only did the sewage samples test positive, Wolfe and her colleagues found that coronavirus levels in the Bay Area’s wastewater followed the same trends as reported cases, the team reported in December 2020 in Environmental Science & Technology. When case counts went up, more virus appeared in the sewage, and vice versa. Early projects in other parts of the country showed similar results.
More than three years later, data on reported cases have become much less reliable. Fewer people are seeking out lab-based PCR tests in favor of easier-to-access at-home tests — with results often not reported. Wastewater trends have become the best proxy to provide early warnings of potential new COVID-19 surges, such as the increased spread this summer, to health officials and the public alike.

Opening the tracking floodgates
In summer 2022, wastewater tracking got a new chance to prove itself. Mpox was rapidly spreading globally, including in the United States. But tests were limited, and the disease, which was spreading primarily through intimate contact between men, quickly drew social stigma, leading some people to hesitate in seeking medical care.

Within a few weeks of the start of the U.S. outbreak, Wolfe and her colleagues, as well as research teams at Biobot and other companies, had developed tests to identify mpox in sewage.

Just as scientists had seen with COVID-19, mpox trends in wastewater matched trends in official case numbers. In California, wastewater results even suggested that the disease may have spread farther than data from doctors’ offices suggested, Wolfe and collaborators reported in February in the New England Journal of Medicine.

Like COVID-19, mpox doesn’t transmit through the water, but sewage testing still picked up the virus. The early results from that summer outbreak convinced some health officials that wastewater technology could be used for many diseases, no matter how they spread, Matus says.
Scientists are starting to find more and more infectious diseases that can be tracked in sewage. “Honestly, everything that we’ve tried so far has worked,” says Wolfe, who is now a principal investigator of WastewaterSCAN, a national sewage testing project led by researchers at Stanford and Emory. The project team currently tests samples for six different viruses and is working on other tests that it can send out to the more than 150 sites in its monitoring network.

Through an informal literature review of pathogens important for public health, scientists at Biobot found that previous research had identified 76 out of 80 of them in wastewater, stool or urine, suggesting that those pathogens could be monitored through sewage. The list ranges from the chicken pox virus to the microbes that cause sexually transmitted diseases like chlamydia to the tickborne bacteria that cause Lyme disease.

Finding focus
With this much opportunity, the question on many researchers’ minds is not, “What can we test for?” but “What should we test for?”

In January, a report put out by the National Academies of Sciences, Engineering and Medicine came up with three criteria. The pathogen should threaten public health. It should be detectable in wastewater. And it should generate data that public health agencies can use to protect their communities.

Given all the threats and hints of what can be found in wastewater, the first two criteria don’t narrow the field too much. So for now, researchers are taking cues from state and local public health officials on which pathogens to prioritize.

Biobot is working on tests for common diseases like the flu, RSV, hepatitis C and gonorrhea. And the CDC has its eye on some of the same common pathogens, as well as strategies for tracking antimicrobial resistance, a threat that has increased during the pandemic as health systems have been under strain.

Even if they choose the perfect targets, though, researchers also have to figure out how to generate useful data. For now, that’s a sticking point.

How to use the data
Tracking pathogens is one thing. But determining how the results correspond to actual numbers of sick people is another, even in the case of COVID-19, where researchers now have years of detailed data. As a result, many public health officials aren’t yet ready to make policy decisions based on poop data.

In New York City over the last three years, for example, the local government has poured more than $1 million into testing for COVID-19, mpox and polio in sewage from the city’s water treatment plants. But the city’s health department hasn’t been using the resulting data to inform local COVID-19 safety measures, so it’s unclear what’s being done with the data.
Health officials are used to one swab per person, says Rachel Poretsky, a microbiologist at the University of Illinois Chicago. She also heads wastewater monitoring for the city of Chicago and the state of Illinois.

Public health training relies on identifying individual sick people and tracing how they became ill. But in wastewater surveillance, one data point could represent thousands of sick people — and the data come from the environment, rather than from hospitals and health clinics. What to do next when positive results turn up isn’t as obvious.

Numbers collected from the health care system always represent patients, so a spike indicates a surge in cases. In the case of sewage data, however, environmental factors like weather, local industries and the coming and going of tourists also can create “weird outliers” that resist easy interpretation, Poretsky says. For instance, a massive rainstorm might dilute samples, or chemical runoff from a factory might interfere with a research team’s analytical methods.

Data interpretation only gets more complicated when scientists begin testing wastewater for an increasing number of health threats. Every pathogen’s data need to be interpreted differently.

With coronavirus data, for example, wastewater tests consistently come back positive, so interpreting the data is all about looking for trends: Are viral concentrations going up or down? How does the amount of virus present compare with the past? A spike in a particular location might signal a surge in the community that hasn’t yet been picked up by the health care system. The community might respond by boosting health resources, such as opening vaccine clinics, handing out free masks and at-home tests, or adding staff to local hospital emergency departments.

Mpox, on the other hand, has infected far fewer people, and positive tests have been rare after last summer’s outbreaks ended. Now, researchers are simply watching to see whether the virus is present or absent in a given sewershed.

“It’s more about having an early warning,” Matus says. If a sewershed suddenly tests positive for mpox after negative results for the last few months, health officials might alert local doctors and community organizations to look out for anyone with symptoms, aiming to identify any cases and prevent a potential outbreak.

Another complicated pathogen is C. auris, a fungus that has developed resistance to common drugs. It can spread rapidly in health care settings — and be detected in sewage. Researchers from Utah and Nevada reported in February in Emerging Infectious Diseases that it was possible to track C. auris in the sewage from areas experiencing outbreaks.

If hospitals or health officials could identify the presence of this fungus early, that information could guide public health actions to curb outbreaks, says Alessandro Rossi, a microbiologist at the Utah Public Health Laboratory in Salt Lake City. But interpreting the warnings isn’t as clear-cut for C. auris as for viruses.

The fungus can grow in sewage after it leaves health care facilities, Rossi says. The pathogen has “the potential to replicate, form biofilms and colonize a sewershed.” In other words, C. auris can create its own data interference, potentially making wastewater results seem worse than they really are.
Moving wastewater into the future
Most current testing programs are reactive. By looking at health threats one at a time using specific PCR tests, the programs mostly confirm that pathogens we already are worrying about are getting people sick.

But some scientists, like Wim Meijer, envision a future in which wastewater monitoring wades into the unknown and alerts us to unusual disease outbreaks. The microbiologist, of the University College Dublin, heads Ireland’s wastewater surveillance program. Ideally, in this ahead-of-the-curve future, after detecting something alarming in sewage, his team could closely collaborate with health officials to study the pathogen and, if necessary, start combating the threat.

One idea for turning the tech proactive is to prepare for new health threats that we can see coming. For example, Meijer and his colleagues are interested in screening Ireland’s sewage for the H5N1 bird flu, but they are not yet doing this testing.

Another approach takes advantage of genetic testing technology to look at everything in our waste. Kartik Chandran, an environmental engineer at Columbia University who has mapped sewers’ microbial ecosystems with this technique, describes it as “trying to shine the light more broadly” rather than looking where the light is already shining brightest.

Such an approach might identify new pathogens before sick people start going to the doctor’s office, potentially leading to an earlier public health response. But with health officials still unsure of how best to use wastewater data, much more basic research is needed first.
“People think wastewater surveillance is the answer to everything, and clearly that’s not true,” says Kirby, of the CDC, reflecting concerns from the state and local officials that she collaborates with at NWSS. Before diving ahead into proactive surveillance, Kirby and her colleagues are working to set up basic wastewater standards and protocols for health agencies. Priorities include evaluating how sewage trends correlate to cases for different pathogens and developing standards for how to use the data.

The wastewater surveillance field also needs to keep growing if the goal is to monitor and contribute to global health, with more sites contributing data and more scientists to analyze it. All of this work requires sustained funding.

The CDC’s program so far has been funded by COVID-era legislation and will run out of money in 2025. While wastewater surveillance is more cost-effective than other types of testing, it still requires a lot of resources. Washington’s state health department, for example, paid Biobot more than $500,000 for a one-year sewage testing contract, while the CDC has paid the company more than $23 million since 2020 for its work with NWSS.

For the last few years, wastewater surveillance has been a giant, messy group project. Scientists have collaborated across fields and locations, across private and public institutions, through Zoom calls and through poop samples shipped on ice. They’ve shown that waste might hold the key to a new way of tracking our collective health.

A lot of unanswered questions remain, and it could be some time before your local sewer can tell you exactly what disease risks you might be facing. But COVID-19 pushed thousands of experts to look into their toilets and start asking those questions. “Now, everyone’s a believer,” says Driver, of ASU. “Everyone’s doing the work.”

Tianjin Customs seize globes that violate the one-China principle

Tianjin Customs recently seized 92 globes that mistakenly labeled China's Taiwan region alongside the name of countries, violating the one-China principle, according to China's General Administration of Customs (GAC) on Thursday.

The globes were discovered by on-site customs officers at North China's Tianjin's Xingang Customs, during the inspection of a declared imported shipment of globes in the import freight channel, according to the GAC.

The globes have been seized according to law and will be further processed.

The GAC said that maps are the main representation of the national territory. A correct national map is a symbol of national sovereignty and territorial integrity.

All printed matter and publications that do not comply with China's regulations on the content representation of open map are strictly prohibited from printing or importing/exporting, according to the GAC.

Additionally, relevant map or map product production and import-export enterprises should strictly comply with laws and regulations and carry out map business activities in accordance with the law.

China's Ministry of Natural Resources (MNR) issued the open map content representation specification in February, requiring open maps or the content representation of map graphics products, should comply with the specification. Detailed requirements have been specified to regulate the depiction of maps concerning China's Taiwan region, the South China Sea, and the Diaoyu Islands, among other areas.

Great tits sing with syntax

Great tits use syntax to compose their tunes.

Japanese great tits (Parus minor) communicate using at least 10 different notes on their own and in combination. Researchers played different calls for Japanese great tits in a forest in Nagano, Japan, to see how the birds responded — an indication of what the call might mean. The birds responded differently to individual notes than they did when played the same note in combination with other notes. And, when researchers reversed the note order, the birds didn’t respond the same way.
By itself, a note means one thing to great tits, but in combination, it means something different, the team argues March 8 in Nature Communications. Similarly, among humans, the order of words in a sentence, its compositional syntax, matters.

Some primates combine calls to convey different messages, but individual notes don’t carry unique meaning in these species. Great tits are the first nonhuman species shown to use compositional syntax, the researchers write.
In this recording, researchers played three types of calls for Japanese great tits: First, a call with three notes — A, B, and C — which signals danger; second, a one-note call (D), which attracts mates; and finally, a combination call, ABC-D, which causes the birds to scan the skies for predators and fly to the source of the sound.
Researchers played an ABC-D call for great tits, and then reversed an ABC-D call. Birds responded differently in each case.

Pollen becoming bee junk food as CO2 rises

Bees may need their own supplemental protein shakes as increasing carbon dioxide in the atmosphere saps the nutritional quality of pollen.

Pollen collected from plants gives bees their only natural source of protein (nectar is a sugar-shot for energy). Yet protein content in pollen of a widespread goldenrod species (Solidago canadensis) dwindled by a third, from about 18 percent to 12 percent, over 172 years, according to analysis of recently collected flowers and of preserved specimens at the Smithsonian Institution’s National Museum of Natural History. During those same years, CO2 concentrations in the atmosphere increased from about 280 parts per million to 398 ppm, researchers report April 12 in Proceedings of the Royal Society B.
The same themes also showed up in two years of growing the goldenrod at CO2 concentrations up to 500 ppm. More CO2 meant less concentrated protein in pollen, say Lewis Ziska of the U.S. Department of Agriculture’s Bee Research Laboratory in Beltsville, Md., and his colleagues.

“It’s like you’re eating a starchier diet — what would that do to us?” says study coauthor Joan Edwards of Williams College in Williamstown, Mass. “Bees aren’t so different.”

Bees, wild or domesticated, need adequate protein to feed their larvae, maintain their immune systems and for many more functions, says bee biologist Cédric Alaux of the French agricultural research agency INRA in Avignon. Canada goldenrod is an example of a species known to offer pollen that can be stored to tide honeybees over the winter. The one-third decrease in protein concentration reported in the new study is big enough to shorten bee life spans, he says.

Lower quality in bee food sources could be contributing to global bee declines observed in recent years and the uncertain state of pollination for crops, Edwards says. “The health of the bee population is not just for the flowers and the bees and biodiversity, but also for human health and well-being.”

Humans have pondered aliens since medieval times

For beings that are supposedly alien to human culture, extraterrestrials are pretty darn common. You can find them in all sorts of cultural contexts, from comic books, sci-fi novels and conspiracy theories to Hollywood films and old television reruns. There’s Superman and Doctor Who, E.T. and Mindy’s friend Mork, Mr. Spock, Alf, Kang and Kodos and My Favorite Martian. Of course, there’s just one hitch: They’re all fictional. So far, real aliens from other worlds have refused to show their faces on the real-world Earth — or even telephone, text or tweet. As the Italian physicist Enrico Fermi so quotably inquired during a discussion about aliens more than six decades ago, “Where is everybody?”
Scientific inquiry into the existence of extraterrestrial intelligence still often begins by pondering Fermi’s paradox: The universe is vast and old, so advanced civilizations should have matured enough by now to send emissaries to Earth. Yet none have. Fermi suspected that it wasn’t feasible or that aliens didn’t think visiting Earth was worth the trouble. Others concluded that they simply don’t exist. Recent investigations indicate that harsh environments may snuff out nascent life long before it evolves the intelligence necessary for sending messages or traveling through space.
In any event, Fermi’s question did not launch humankind’s concern with visitors from other planets. Imagining other worlds, and the possibility of intelligent life-forms inhabiting them, did not originate with modern science or in speculative fiction. In the ancient world, philosophers argued about the possibility of multiple universes; in the Middle Ages the question of the “plurality of worlds” and possible inhabitants occupied the deepest of thinkers, spawning intricate and controversial philosophical, theological and astronomical debate. Far from being a merely modern preoccupation, life beyond Earth has long been a burning issue animating the human race’s desire to understand itself, and its place in the cosmos.

Other worlds, illogical
From ancient times Earth’s place was widely regarded to be the center of everything. As articulated by the Greek philosopher Aristotle, the Earth was the innermost sphere in a universe, or world, surrounded by various other spheres containing the moon, sun, planets and stars. Those heavenly spheres, crystalline and transparent, rotated about the Earthly core comprising four elements: fire, air, water and earth. Those elements layered themselves on the basis of their essence, or “nature” — earth’s natural place was at the middle of the cosmos, which was why solid matter fell to the ground, seeking the inaccessible center far below.

On the basis of this principle, Aristotle deduced the impossibility of other worlds. If some other world existed, its matter (its “earth”) would seek both the center of its world and of our world as well. Such opposite imperatives posed a logical contradiction (which Aristotle, having more or less invented logic, regarded as a directly personal insult). He also applied further reasoning to point out that there is no space (no void) outside the known world for any other world to occupy. So, Aristotle concluded, two worlds cannot both exist.

Some Greeks (notably those advocating the existence of atoms) believed otherwise. But Aristotle’s view prevailed. By the 13th century, once Aristotle’s writings had been rediscovered in medieval Europe, most scholars defended his position.
But then religion leveled the philosophical playing field. Fans of other worlds got a chance to make their case.

In 1277, the bishop of Paris, Étienne Tempier, banned scholars from teaching 219 principles, manny associated with Aristotle’s philosophy. Among the prohibited teachings on the list was item 34: that God could not create as many worlds as he wanted to. Since the penalty for violating this decree was excommunication, Parisian scholars suddenly discovered rationales allowing multiple worlds, empowering God to defy Aristotle’s logic. And since Paris was the intellectual capital of the European world, scholars elsewhere followed the Parisian lead.
While several philosophers asserted that God could make many worlds, most intimated that he probably wouldn’t have bothered. Hardly anyone addressed the likelihood of alien life, although both Jean Buridan in Paris and William of Ockham in Oxford did consider the possibility. “God could produce an infinite [number of] individuals of the same kind as those that now exist,” wrote Ockham, “but He is not limited to producing them in this world.”
Populated worlds showed up more prominently in writings by the renegade thinkers Nicholas of Cusa (1401–1464) and Giordano Bruno (1548–1600). They argued not only for the existence of other worlds, but also for worlds inhabited by beings just like, or maybe better than, Earth’s humans.

“In every region inhabitants of diverse nobility of nature proceed from God,” wrote Nicholas, who argued that space had no center, and therefore the Earth could not be central or privileged with respect to life. Bruno, an Italian friar, asserted that God’s perfection demanded an infinity of worlds, and beings. “Infinite perfection is far better presented in innumerable individuals than in those which are numbered and finite,” Bruno averred.

Burned at the stake for heretical beliefs (though not, as often stated, for his belief in other worlds), Bruno did not live to see the triumph of Copernicanism during the 17th century. Copernicus had placed the sun at the hub of a planetary system, making the Earth just one planet of several. So the existence of “other worlds” eventually became no longer speculation, but astronomical fact, inviting the notion of otherworldly populations, as the prominent Dutch scientist Christiaan Huygens pointed out in the late 1600s. “A man that is of Copernicus’ opinion, that this Earth of ours is a planet … like the rest of the planets, cannot but sometimes think that it’s not improbable that the rest of the planets have … their inhabitants too,” Huygens wrote in his New Conjectures Concerning the Planetary Worlds, Their Inhabitants and Productions.

A few years earlier, French science popularizer Bernard le Bovier de Fontenelle had surveyed the prospects for life in the solar system in his Conversations on the Plurality of Worlds, an imaginary dialog between a philosopher and an uneducated but intelligent woman known as the Marquise.

“It would be very strange that the Earth was as populated as it is, and the other planets weren’t at all,” the philosopher told the Marquise. Although he didn’t think people could live on the sun (if there were any, they’d be blinded by its brightness), he sided with those who envisioned inhabitants on other planets and even the moon.

“Just as there have been and still are a prodigious number of men foolish enough to worship the Moon, there are people on the Moon who worship the Earth,” he wrote.

From early modern times onward, discussion of aliens was not confined to science and philosophy. They also appeared in various works of fiction, providing plot devices that remain popular to the present day. Often authors used aliens as stand-ins for evil (or occasionally benevolent) humans to comment on current events. Modern science fiction about aliens frequently portrays them in the role of tyrants or monsters or victims, with parallels to real life (think Flash Gordon’s nemesis Ming the Merciless, a 1930s dictator, or the extraterrestrials of the 1980s film and TV show Alien Nation — immigrants encountering bigotry and discrimination). When humans look for aliens, it seems, they often imagine themselves.

Serious science
While aliens thrived in fiction, though, serious scientific belief in extraterrestrials — at least nearby — diminished in the early 20th century, following late 19th century exuberance about possible life on Mars. Supposedly a network of lines interpreted as canals signified the presence of a sophisticated Martian civilization; its debunking (plus further knowledge about planetary environments) led to general agreement that finding intelligent life elsewhere in the solar system was not an intelligent bet.
On the other hand, the universe had grown incredibly vaster than the early Copernicans had imagined. The sun had become just one of billions of stars in the Milky Way galaxy, which in turn was only one of billions of other similar galaxies, or “island universes.” Within a cosmos so expansive, alien enthusiasts concluded, the existence of other life somewhere seemed inevitable. In 1961, astronomer Frank Drake developed an equation to gauge the likelihood of extraterrestrial life’s existence; by the 1990s he estimated that 10,000 planets possessed advanced civilizations in the Milky Way alone, even before anybody really knew for sure that planets outside the solar system actually existed.

But now everybody does. In the space of the last two decades, conclusive evidence of exoplanets, now numbering in the thousands, has reconfigured the debate and sharpened Fermi’s original paradox. No one any longer doubts that planets are plentiful. But still there’s been not a peep from anyone living on them, despite years of aiming radio telescopes at the heavens in hope of detecting a signal in the static of interstellar space.

Maybe such signals are just too rare or too weak for human instruments to detect. Or possibly some cosmic conspiracy is at work to prevent civilizations from communicating — or arising in the first place. Or perhaps civilizations that do arise are eradicated before they have a chance to communicate.

Or maybe the alien invasion has merely been delayed. Fermi’s paradox implicitly assumes that other civilizations have been around long enough to develop galactic transportation systems. After all, the universe, born in the Big Bang 13.8 billion years ago, is three times as old as the Earth. So most analyses assume that alien civilizations had a head start and would be advanced enough by now to go wherever they wanted to. But a new paper suggests that livable galactic neighborhoods may have developed only relatively recently.
In a young, smaller and more crowded universe, cataclysmic explosions known as gamma-ray bursts may have effectively sterilized otherwise habitable planets, Tsvi Piran and collaborators suggest in a paper published in February in Physical Review Letters.

A planet near the core of a galaxy would be especially susceptible to gamma-ray catastrophes. And in a young universe, planets closer to the galactic edge (like Earth) would also be in danger from gamma-ray bursts in neighboring satellite galaxies. Only as the expansion of the universe began to accelerate — not so long before the birth of the Earth — would galaxies grow far enough apart to provide safety zones for life.

“The accelerated expansion induced by a cosmological constant slows the growth of cosmic structures, and increases the mean inter-galaxy separation,” Piran and colleagues write. “This reduces the number of nearby satellites likely to host catastrophic” gamma-ray bursts. So most alien civilizations would have begun to flourish not much before Earth’s did; those aliens may now be wondering why nobody has visited them.

Still, the radio silence from the sky makes some scientists wonder whether today’s optimism about ET’s existence will go the way of the Martian canal society. From one sobering perspective, aliens aren’t sending messages because few planets remain habitable long enough for life to develop an intelligent civilization. One study questions, for instance, how likely it is that life, once initiated on any planet, would shape its environment sufficiently well to provide for lasting bio-security.

In fact, that study finds, a wet, rocky planet just the right distance from a star — in the Goldilocks zone — might not remain habitable for long. Atmospheric and geochemical processes would typically drive either rapid warming (producing an uninhabitable planet like Venus) or quick cooling, freezing water and leaving the planet too cold and dry for life to survive, Aditya Chopra and Charles Lineweaver conclude in a recent issue of Astrobiology. Only if life itself alters these processes can it maintain a long-term home suitable for developing intelligence.

“Feedback between life and environment may play the dominant role in maintaining the habitability of the few rocky planets in which life has been able to evolve,” wrote Chopra and Lineweaver, both of the Australian National University in Canberra.

Yet even given such analyses — based on a vastly deeper grasp on astronomy and cosmology than medieval scholars possessed — whether real aliens exist remains one of those questions that science cannot now answer. It’s much like other profound questions also explored in medieval times: What is the universe made of? Is it eternal? Today’s scientists may be closer (or not) to answering those questions than were their medieval counterparts. Nevertheless the answers are not yet in hand.

Maybe we’ll just have to pose those questions to the aliens, if they exist, and are ever willing to communicate. And if those aliens do arrive, and provide the answers, humankind may well discover how medieval its understanding of the cosmos still is. Or perhaps the aliens will be equally clueless about nature’s deepest mysteries. As Fontenelle’s philosopher told the Marquise: “There’s no indication that we’re the only foolish species in the universe. Ignorance is quite naturally a widespread thing.”