Lasers reveal ancient urban sprawl hidden in the Amazon

A massive urban landscape that contained interconnected campsites, villages, towns and monumental centers thrived in the Amazon rainforest more than 600 years ago.

In what is now Bolivia, members of the Casarabe culture built an urban system that included straight, raised causeways running for several kilometers, canals and reservoirs, researchers report May 25 in Nature.

Such low-density urban sprawl from pre-Columbian times was previously unknown in the Amazon or anywhere else in South America, say archaeologist Heiko Prümers of the German Archaeological Institute in Bonn and colleagues. Rather than constructing huge cities densely packed with people, a substantial Casarabe population spread out in a network of small to medium-sized settlements that incorporated plenty of open space for farming, the scientists conclude.
Airborne lasers peered through dense trees and ground cover to identify structures from that low-density urban network that have long eluded land-based archaeologists.

Earlier excavations indicated that Casarabe maize farmers, fishers and hunters inhabited an area of 4,500 square kilometers. For about a century, researchers have known that Casarabe people fashioned elaborate pottery and constructed large earthen mounds, causeways and ponds. But these finds were located at isolated forest sites that are difficult to excavate, leaving the reasons for mound building and the nature of Casarabe society, which existed from about the year 500 to 1400, a mystery.

Prümers’ team opted to look through the Amazon’s lush cover from above, aiming to find relics of human activity that typically remain hidden even after careful ground surveys. The scientists used a helicopter carrying special equipment to fire laser pulses at the Amazon forest as well as stretches of grassland. Those laser pulses reflect data from the Earth’s surface. This technique, called light detection and ranging, or lidar for short, enables researchers to map the contours of now-obscured structures.

Looking at the new lidar images, “it is obvious that the mounds are platforms and pyramids standing on artificial terraces at the center of well-planned settlements,” Prümers says.

Prümers’ team conducted lidar surveys over six parts of ancient Casarabe territory. The lidar data revealed 26 sites, 11 of them previously unknown.

Two sites, Cotoca and Landívar, are much larger than the rest. Both settlements feature rectangular and U-shaped platform mounds and cone-shaped earthen pyramids atop artificial terraces. Curved moats and defensive walls border each site. Causeways radiate out from Cotoca and Landívar in all directions, connecting those primary sites to smaller sites with fewer platform mounds that then link up to what were probably small campsites or areas for specialized activities, such as butchering prey.

The Casarabe society’s network of settlements joins other ancient and present-day examples of low-density urban sprawl around the world, says archaeologist Roland Fletcher of the University of Sydney. These sites raise questions about whether only places with centralized governments that ruled over people who were packed into neighborhoods on narrow streets, such as 6,000-year-old Mesopotamian metropolises, can be defined as cities.

Some past urban settlements organized around crop growing spanned up to 1,000 square kilometers or more in tropical regions. These include locales such as Southeast Asia’s Greater Angkor roughly 700 to 800 years ago and interconnected Maya sites in Central America dating to at least 2,300 years ago (SN: 4/29/16; SN: 9/27/18). Today, extended areas outside large cities, especially in Southeast Asia, mix industrial and agricultural activities over tens of thousands of kilometers.

Clusters of interconnected Casarabe settlements ranged in area from 100 square kilometers to more than 500 square kilometers. Spread-out settlements of comparable area include 6,000-year-old sites from Eastern Europe’s Trypillia culture (SN: 2/19/20).

Tropical forests that have gone largely unexplored, such as Central Africa’s Congo Basin, probably hosted other early forms of low-density urban development, Fletcher predicts.

Only further excavations guided by lidar evidence can begin to untangle the size of the Casarabe population, Prümers says. Whether primary Casarabe sites represented seats of power in states with upper and lower classes also remains unknown, he adds.

Casarabe culture’s urban sprawl must have encompassed a considerable number of people in the centuries before the Spanish arrived and Indigenous population numbers plummeted, largely due to diseases, forced labor and slavery, says archaeologist John Walker of the University of Central Florida in Orlando.

Whatever Casarabe honchos had in mind as their tropical settlement network spread, he says, “we may have to set aside some of our strongly held ideas about what the Amazon is, and what a city is, to better understand what happened.”

A ‘mystery monkey’ in Borneo may be a rare hybrid. That has scientists worried

Six years ago, tour guide Brenden Miles was traveling down the Kinabatangan River in the Malaysian part of Borneo, when he spotted an odd-looking primate he had never seen before. He snapped a few pictures of the strange monkey and, on reaching home, checked his images.

“At first, I thought it could be a morph of the silvered leaf monkey,” meaning a member of the species with rare color variation, Miles says. But then he noticed other little details. “Its nose was long like that of a proboscis monkey, and its tail was thicker than that of a silvered leaf [monkey],” he says. He posted a picture of the animal on Facebook and forgot all about it.

Now, an analysis of that photo and others suggests that the “mystery monkey” is a hybrid of two distantly related primate species that share the same fragmented habitat.
The putative offspring was produced when a male proboscis monkey (Nasalis larvatus) mated with a female silvered leaf monkey (Trachypithecus cristatus), researchers suggest April 26 in the International Journal of Primatology. And that conclusion has the scientists worried about the creature’s parent species.

Hybridization between closely related organisms has been observed in captivity and occasionally in the wild (SN: 7/23/21). “But hybridization across genera, that’s very rare,” says conservation practitioner Ramesh Boonratana, the regional vice-chair for Southeast Asia for the International Union for Conservation of Nature’s primate specialist group.

Severe habitat loss, fragmentation and degradation caused by expanding palm oil plantations along the Kinabatangan River could explain how the possible hybrid came to be, says primatologist Nadine Ruppert.

“Different species — even from the same genus — when they share a habitat, they may interact with each other, but they may usually not mate. This kind of cross-genera hybridization happens only when there is some ecological pressure,” says Ruppert, of the Universiti Sains Malaysia in Penang Island.

The state of Sabah, where Kinabatangan River is located, lost about 40 percent of its forest cover from 1973 to 2010, with logging and palm oil plantations being the main drivers of deforestation, a study in 2014 found.
“In certain areas, both [monkey] species are confined to small forest fragments along the river,” Ruppert says. This leads to competition for food, mates and other resources. “The animals cannot disperse and, in this case, the male of the larger species — the proboscis monkey — can easily displace the male silvered leaf monkey.”

Since 2016, there have been some more documented sightings of the mystery monkey, though these have been sporadic. The infrequent sightings and the COVID-19 pandemic has, for now, prevented researchers from gathering fecal samples for genetic analysis to reveal the monkey’s identity. Instead, Ruppert and colleagues compared images of the possible hybrid with those of the parent species, both visually as well as by using limb ratios. “If the individual was from one of the two parent species, all its measurements would be similar to that of one species,” Ruppert says. “But that is not the case with this animal.”

A photograph of a male proboscis monkey mating with a female silvered leaf monkey, along with anecdotes from boat operators and tour guides about a single male proboscis monkey hanging around a troop of female silvered leaf monkeys, has added further weight to the researchers’ conclusion.

The mystery monkey is generating a lot of excitement in the area, but Ruppert is concerned for the welfare of both proposed parent species. The International Union for Conservation of Nature classifies proboscis monkeys as endangered and silvered leaf monkeys as vulnerable. “The hybrid is gorgeous, but we don’t want to see more of them,” Ruppert says. “Both species should have a large enough habitat, dispersal opportunities and enough food to conduct their natural behaviors in the long term.”

Increasing habitat loss or fragmentation in Borneo and elsewhere as a result of changing land uses or climate change could lead to more instances of mating — or at least, attempts at mating — between species or even genera, Boonratana says.

The mystery monkey was last photographed in September of 2020 with swollen breasts and holding a baby, suggesting that the animal is a fertile female. That’s another surprising development, the researchers say, because most hybrids tend to be sterile.

High-energy neutrinos may come from black holes ripping apart stars

When a star gets too close to a black hole, sparks fly. And, potentially, so do subatomic particles called neutrinos.

A dramatic light show results when a supermassive black hole rips apart a wayward star. Now, for the second time, a high-energy neutrino has been spotted that may have come from one of these “tidal disruption events,” researchers report in a study accepted in Physical Review Letters.

These lightweight particles, which have no electric charge, careen across the cosmos and can be detected upon their arrival at Earth. The origins of such zippy neutrinos are a big mystery in physics. To create them, conditions must be just right to drastically accelerate charged particles, which would then produce neutrinos. Scientists have begun lining up likely candidates for cosmic particle accelerators. In 2020, researchers reported the first neutrino linked to a tidal disruption event (SN: 5/26/20). Other neutrinos have been tied to active galactic nuclei, bright regions at the centers of some galaxies (SN: 7/12/18).
Discovered in 2019, the tidal disruption event reported in the new study stood out. “It was extraordinarily bright; it’s really one of the brightest transients ever seen,” says astroparticle physicist Marek Kowalski of Deutsches Elektronen-Synchrotron, or DESY, in Zeuthen, Germany.

Transients are short-lived flares in the sky, such as tidal disruption events and exploding stars called supernovas. Further observations of the brilliant outburst revealed that it shone in infrared, X-rays and other wavelengths of light.

Roughly a year after the flare’s discovery, the Antarctic neutrino observatory IceCube spotted a high-energy neutrino. By tracing the particle’s path backward, researchers determined that the neutrino came from the flare’s vicinity.

The matchup between the two events could be a coincidence. But when combined with the previous neutrino that was tied to a tidal disruption event, the case gets stronger. The probability of finding two such associations by chance is only about 0.034 percent, the researchers say.

It’s still not clear how tidal disruption events would produce high-energy neutrinos. In one proposed scenario, a jet of particles flung away from the black hole could accelerate protons, which could interact with surrounding radiation to produce the speedy neutrinos.

‘We need more data … in order to say that these are real neutrino sources or not,” says astrophysicist Kohta Murase of Penn State University, a coauthor of the new study. If the link between the neutrinos and tidal disruption events is real, he’s optimistic that researchers won’t have to wait too long. “If this is the case, we will see more.”

But scientists don’t all agree that the flare was a tidal disruption event. Instead, it could have been an especially bright type of supernova, astrophysicist Irene Tamborra and colleagues suggest in the April 20 Astrophysical Journal.

In such a supernova, it’s clear how energetic neutrinos could be produced, says Tamborra, of the Niels Bohr Institute at the University of Copenhagen. Protons accelerated by the supernova’s shock wave could collide with protons in the medium that surrounds the star, producing other particles that could decay to make neutrinos.

It’s only recently that observations of high-energy neutrinos and transients have improved enough to enable scientists to find potential links between the two. “It’s exciting,” Tamborra says. But as the debate over the newly detected neutrino’s origin shows, “at the same time, it’s uncovering many things that we don’t know.

Pressure to conform to social norms may explain risky COVID-19 decisions

The pandemic has entered a murky stage, and social norms are quickly shifting, something I’ve thought a lot about lately. Many people are testing at home, or not at all. Here in Vermont, where I live, you can pick up a type of PCR test that can be taken at home. But state officials both here and elsewhere are no longer carefully monitoring the results of these tests, which means that the actual spread of coronavirus in the U.S. population remains unclear (SN: 4/22/22).

For a few weeks, rumors of a stealth COVID-19 wave have been circulating both in the media and on my Twitter feed. Now cases and hospitalizations are rising, as are the levels of coronavirus in wastewater. That suggests that more cases, and ultimately deaths, could follow.
Even with rising caseloads and a vaccination rate that has flatlined at about 66 percent of the eligible population, the American public has largely begun to move on from the COVID-19 crisis. People are shedding their masks, eating out, attending concerts, traveling to far-flung locations, having large, indoor weddings and doing all the social things that people tend to do when left to their own devices.

The 2,600-person White House Correspondents’ Association dinner late last month is a case in point. Just as host Trevor Noah prophesied, many of those in attendance have since tested positive for COVID-19, including U.S. Secretary of State Antony Blinken and reporters from NBC, ABC, the Washington Post, Politico and other media outlets. And those who almost certainly knew better — cue White House Coronavirus Response Coordinator Ashish Jha — nonetheless made an appearance.

Myriad quirks related to human behavior undoubtedly underpin these arguably poor choices. The Decision Lab website has a list of the biases and mental shortcuts people use to make decisions. The one that caught my eye is social norms. This particular quirk outlines what behaviors people deem appropriate in a given situation.

I started thinking about social norms while writing a feature on how to get people in the United States to eat less meat when the practice is so, well, normal (SN: 5/11/22). Social norms, my research informed me, vary with the group one is hanging out with and one’s environs. “We rapidly switch our perspective depending on the context of the situation we find ourselves in,” writes marketing expert John Laurence on the Decision Lab site.

I might have found this idea of rapid switching suspect had I not recently experienced the phenomenon. My husband’s Disney-phile brother and his wife had been planning a family reunion in Disney World in Florida since the start of the pandemic. And I, a curmudgeonly sort not prone to feeling the magic, long ago agreed to go on the condition that other people do all the planning. And so it was, after multiple COVID-related postponements, that my kids, my husband and I landed in Orlando on a blisteringly hot April day.

Disney normal, I soon learned, bore little resemblance to Vermont normal. This was obvious immediately from people’s attire. All around me parents and kids dressed in coordinated outfits and matching Mickey Mouse ears. (Apologies to my kids — your mom missed the fashion memo.)
Social norms almost certainly arose to foster cohesion among our earliest ancestors, who needed solidarity to hunt large prey, share limited resources and ward off predators and enemy tribes. In-group norms also provide humans with a sense of belonging, which research suggests is vital for our overall health. A meta-analysis of more than 3.4 million people followed for an average of seven years showed that the likelihood of dying during the study period increased by 26 percent for participants who reported feeling alone (SN: 3/29/20).

Not surprisingly, then, one of the strongest drivers of human behavior is to seek out belonging. At Disney, that quest means blocking out the reality that exists just outside the fiefdom. Wars, climate crises, political fighting and the like have no place within those magical walls. Nor do reminders of a global health crisis that, according to the latest World Health Organization estimates, has thus far killed nearly 15 million people worldwide.

Within Disney’s walls, throngs of mostly maskless tourists packed onto iconic rides and into restaurants. When halfway through our trip, a Florida judge ruled that masks could not be mandated on public transit, nary a mask was to be seen on buses shuttling people to the Magic Kingdom and Epcot Center. And everywhere, all the time, people seemed to be coughing, sniffling or blowing their noses.

As a science reporter covering COVID-19, I certainly knew that I should keep my mask on. And yet, my resolve soon faltered. My kids pointed out that no one else was masking, not even my typically rule-following relatives. Donning my mask meant confessing that I was not reveling in the sparkle and glitz and magic and making all too obvious to my beloved extended family that I did not, in fact, belong. I kept my face covering in my pocket.

Humans’ tendency toward conformity is not all bad. In a now classic study from the 1980s, researchers investigated how to reduce water consumption in drought-prone California. Signs at the University of California, Santa Cruz asking students to turn off the shower while soaping up led to only 6 percent compliance. So researchers recruited male students to serve as norm-setting role models. These role models would hang out in the communal shower until they heard another student come in, and then soap up with the water off. When one role model soaped with the shower off, roughly half of the unwitting students also began turning off their faucets at soaping time. Compliance jumped to 67 percent when two role models followed the sign.

But conformity can also distort how we make decisions. For instance, in the summer of 2020, when the pandemic was still new, researchers asked 23,000 people in Mexico to predict how a fictional woman named Mariana would decide whether or not to attend a birthday party. Most participants believed Mariana should not attend. But when they read a sentence suggesting her friends would attend or that others approved of the party, their predictions that Mariana would also go increased by 25 percent, researchers reported in PLOS ONE.

My decision to conform to Disney normal ended predictably — with a positive COVID-19 test. After weeks of coughing and sleepless nights, though, my frustration is less directed at myself than at political leaders who so blithely ignore both epidemiology and human behavior research and tell us to live like it’s 2019. It’s not. Nor is it 2020 or 2021. It’s the murky year known as 2022. And the rules of behavior that bolster our social norms — such as role models who refrain from large, indoor, unmasked gatherings, and leaders who uphold mask mandates on public transit to protect the most vulnerable — should reflect this liminal space.

A Denisovan girl’s fossil tooth may have been unearthed in Laos

A molar tooth from Southeast Asia probably belonged to a member of a cryptic group of Stone Age hominids called Denisovans, researchers say.

If so, this relatively large tooth joins only a handful of fossils from Denisovans, who are known from ancient DNA pegging them as close Neandertal relatives.

Analyses of the tooth’s internal structure and protein makeup indicate that the molar came from a girl in the Homo genus. She died between the ages of 3½ and 8½, paleoanthropologist Fabrice Demeter of the University of Copenhagen and colleagues say.
A Denisovan molar that dates to at least 160,000 years ago was previously found on the Tibetan Plateau (SN: 12/16/19). The newly discovered tooth strongly resembles that other molar, indicating that the new find is probably Denisovan too, the team reports May 17 in Nature Communications. Before the Tibetan Plateau tooth, all known fossils from the mysterious hominids had been found in Siberia.

Estimated ages of sediment and fossil animal bones in Tam Ngu Hao 2, or Cobra Cave, in Laos place the tooth found there between 164,000 and 131,000 years old.

It’s possible that the Cobra Cave tooth represents a Neandertal or someone with Denisovan and Neandertal ancestry (SN: 8/22/18), Demeter says. His group hopes to extract DNA from the fossil, which could clarify its evolutionary status.

It now appears that at least five Homo species, including Denisovans, inhabited Southeast Asia between roughly 150,000 and 40,000 years ago, Demeter says. Others include Homo sapiens, Homo erectus (SN: 12/18/19), Homo luzonensis (SN: 4/10/19) and Homo floresiensis (SN: 3/30/16), also known as hobbits, he contends.

Still, some researchers regard Denisovans as one of several closely related, ancient Homo populations rather than a distinct species (SN: 6/25/21). Whatever evolutionary ID Denisovans actually held, the Cobra Cave tooth adds to suspicions that the hominids inhabited Southeast Asia’s tropical forests as well as Central Asia’s cold mountain ranges and Siberia.