Four billion years ago, lava spilled onto the moon’s crust, etching the man in the moon we see today. But the volcanoes may have also left a much colder legacy: ice.
Two billion years of volcanic eruptions on the moon may have led to the creation of many short-lived atmospheres, which contained water vapor, a new study suggests. That vapor could have been transported through the atmosphere before settling as ice at the poles, researchers report in the May Planetary Science Journal. Since the existence of lunar ice was confirmed in 2009, scientists have debated the possible origins of water on the moon, which include asteroids, comets or electrically charged atoms carried by the solar wind (SN: 11/13/09). Or, possibly, the water originated on the moon itself, as vapor belched by the rash of volcanic eruptions from 4 billion to 2 billion years ago.
“It’s a really interesting question how those volatiles [such as water] got there,” says Andrew Wilcoski, a planetary scientist at the University of Colorado Boulder. “We still don’t really have a good handle on how much are there and where exactly they are.”
Wilcoski and his colleagues decided to start by tackling volcanism’s viability as a lunar ice source. During the heyday of lunar volcanism, eruptions happened about once every 22,000 years. Assuming that H2O constituted about a third of volcano-spit gasses — based on samples of ancient lunar magma — the researchers calculate that the eruptions released upward of 20 quadrillion kilograms of water vapor in total, or the volume of approximately 25 Lake Superiors.
Some of this vapor would have been lost to space, as sunlight broke down water molecules or the solar wind blew the molecules off the moon. But at the frigid poles, some could have stuck to the surface as ice.
For that to happen, though, the rate at which the water vapor condensed into ice would have needed to surpass the rate at which the vapor escaped the moon. The team used a computer simulation to calculate and compare these rates. The simulation accounted for factors such as surface temperature, gas pressure and the loss of some vapor to mere frost.
About 40 percent of the total erupted water vapor could have accumulated as ice, with most of that ice at the poles, the team found. Over billions of years, some of that ice would have converted back to vapor and escaped to space. The team’s simulation predicts the amount and distribution of ice that remains. And it’s no small amount: Deposits could reach hundreds of meters at their thickest point, with the south pole being about twice as icy as the north pole.
The results align with a long-standing assumption that ice dominates at the poles because it gets stuck in cold traps that are so cold that ice will stay frozen for billions of years. “There are some places at the lunar poles that are as cold as Pluto,” says planetary scientist Margaret Landis of the University of Colorado Boulder.
Volcanically sourced water vapor traveling to the poles, though, probably depends on the presence of an atmosphere, say Landis, Wilcoski and their colleague Paul Hayne, also a planetary scientist at the University of Colorado Boulder. An atmospheric transit system would have allowed water molecules to travel around the moon while also making it more difficult for them to flee into space. Each eruption triggered a new atmosphere, the new calculations indicate, which then lingered for about 2,500 years before disappearing until the next eruption some 20,000 years later.
This part of the story is most captivating to Parvathy Prem, a planetary scientist at Johns Hopkins Applied Physics Laboratory in Laurel, Md., who wasn’t involved in the research. “It’s a really interesting act of imagination.… How do you create atmospheres from scratch? And why do they sometimes go away?” she says. “The polar ices are one way to find out.”
If lunar ice was belched out of volcanoes as water vapor, the ice may retain a memory of that long-ago time. Sulfur in the polar ice, for example, would indicate that it came from a volcano as opposed to, say, an asteroid. Future moon missions plan to drill for ice cores that could confirm the ice’s origin.
Looking for sulfur will be important when thinking about lunar resources. These water reserves could someday be harvested by astronauts for water or rocket fuel, the researchers say. But if all the lunar water is contaminated with sulfur, Landis says, “that’s a pretty critical thing to know if you plan on bringing a straw with you to the moon.”
A massive urban landscape that contained interconnected campsites, villages, towns and monumental centers thrived in the Amazon rainforest more than 600 years ago.
In what is now Bolivia, members of the Casarabe culture built an urban system that included straight, raised causeways running for several kilometers, canals and reservoirs, researchers report May 25 in Nature.
Such low-density urban sprawl from pre-Columbian times was previously unknown in the Amazon or anywhere else in South America, say archaeologist Heiko Prümers of the German Archaeological Institute in Bonn and colleagues. Rather than constructing huge cities densely packed with people, a substantial Casarabe population spread out in a network of small to medium-sized settlements that incorporated plenty of open space for farming, the scientists conclude. Airborne lasers peered through dense trees and ground cover to identify structures from that low-density urban network that have long eluded land-based archaeologists.
Earlier excavations indicated that Casarabe maize farmers, fishers and hunters inhabited an area of 4,500 square kilometers. For about a century, researchers have known that Casarabe people fashioned elaborate pottery and constructed large earthen mounds, causeways and ponds. But these finds were located at isolated forest sites that are difficult to excavate, leaving the reasons for mound building and the nature of Casarabe society, which existed from about the year 500 to 1400, a mystery.
Prümers’ team opted to look through the Amazon’s lush cover from above, aiming to find relics of human activity that typically remain hidden even after careful ground surveys. The scientists used a helicopter carrying special equipment to fire laser pulses at the Amazon forest as well as stretches of grassland. Those laser pulses reflect data from the Earth’s surface. This technique, called light detection and ranging, or lidar for short, enables researchers to map the contours of now-obscured structures.
Looking at the new lidar images, “it is obvious that the mounds are platforms and pyramids standing on artificial terraces at the center of well-planned settlements,” Prümers says.
Prümers’ team conducted lidar surveys over six parts of ancient Casarabe territory. The lidar data revealed 26 sites, 11 of them previously unknown.
Two sites, Cotoca and Landívar, are much larger than the rest. Both settlements feature rectangular and U-shaped platform mounds and cone-shaped earthen pyramids atop artificial terraces. Curved moats and defensive walls border each site. Causeways radiate out from Cotoca and Landívar in all directions, connecting those primary sites to smaller sites with fewer platform mounds that then link up to what were probably small campsites or areas for specialized activities, such as butchering prey.
The Casarabe society’s network of settlements joins other ancient and present-day examples of low-density urban sprawl around the world, says archaeologist Roland Fletcher of the University of Sydney. These sites raise questions about whether only places with centralized governments that ruled over people who were packed into neighborhoods on narrow streets, such as 6,000-year-old Mesopotamian metropolises, can be defined as cities.
Some past urban settlements organized around crop growing spanned up to 1,000 square kilometers or more in tropical regions. These include locales such as Southeast Asia’s Greater Angkor roughly 700 to 800 years ago and interconnected Maya sites in Central America dating to at least 2,300 years ago (SN: 4/29/16; SN: 9/27/18). Today, extended areas outside large cities, especially in Southeast Asia, mix industrial and agricultural activities over tens of thousands of kilometers.
Clusters of interconnected Casarabe settlements ranged in area from 100 square kilometers to more than 500 square kilometers. Spread-out settlements of comparable area include 6,000-year-old sites from Eastern Europe’s Trypillia culture (SN: 2/19/20).
Tropical forests that have gone largely unexplored, such as Central Africa’s Congo Basin, probably hosted other early forms of low-density urban development, Fletcher predicts.
Only further excavations guided by lidar evidence can begin to untangle the size of the Casarabe population, Prümers says. Whether primary Casarabe sites represented seats of power in states with upper and lower classes also remains unknown, he adds.
Casarabe culture’s urban sprawl must have encompassed a considerable number of people in the centuries before the Spanish arrived and Indigenous population numbers plummeted, largely due to diseases, forced labor and slavery, says archaeologist John Walker of the University of Central Florida in Orlando.
Whatever Casarabe honchos had in mind as their tropical settlement network spread, he says, “we may have to set aside some of our strongly held ideas about what the Amazon is, and what a city is, to better understand what happened.”
One million deaths. That is now roughly the toll of COVID-19 in the United States. And that official milestone is almost certainly an undercount. The World Health Organization’s data suggest that this country hit a million deaths early in the year.
Whatever the precise dates and numbers, the crisis is enormous. The disease has taken the lives of more than 6 million people worldwide. Yet our minds cannot grasp such large numbers. Instead, as we go further out on a mental number line, our intuitive understanding of quantities, or number sense, gets fuzzier. Numbers simply start to feel big. Consequently, people’s emotions do not grow stronger as crises escalate. “The more who die, the less we care,” psychologists Paul Slovic and Daniel Västfjäll wrote in 2014. But even as our brains struggle to grasp big numbers, the modern world is awash in such figures. Demographic information, funding for infrastructure and schools, taxes and national deficits are all calculated in the millions, billions and even trillions. So, too, are the human and financial losses from global crises, including the pandemic, war, famines and climate change. We clearly have a need to conceptualize big numbers. Unfortunately, the slow drumbeat of evolution means our brains have yet to catch up with the times.
Our brains think 5 or 6 is big. Numbers start to feel big surprisingly fast, says educational neuroscientist Lindsey Hasak of Stanford University. “The brain seems to consider anything larger than five a large number.”
Other scientists peg that value at four. Regardless of the precise pivot from small to big, researchers agree that humans, along with fish, birds, nonhuman primates and other species, do remarkably well at identifying really, really small quantities. That’s because there’s no counting involved. Instead, we and other species quickly recognize these minute quantities through a process called “subitizing” — that is, we look and we immediately see how many.
“You see one apple, you see three apples, you would never mistake that. Many species can do this,” says cognitive scientist Rafael Núñez of the University of California, San Diego.
When the numbers exceed subitizing range — about four or five for humans in most cultures — species across the biological spectrum can still compare approximate quantities, says cognitive scientist Tyler Marghetis of the University of California, Merced.
Imagine a hungry fish eyeing two clumps of similarly sized algae. Because both of those options will make “awesome feasts,” Marghetis says, the fish doesn’t need to waste limited cognitive resources to differentiate between them. But now imagine that one clump contains 900 leaves and the other 1,200 leaves. “It would make evolutionary sense for the fish to try to make that approximate comparison,” Marghetis says. Scientists call this fuzzy quantification ability an “approximate number sense.” Having the wherewithal to estimate and compare quantities gives animals a survival edge beyond just finding food, researchers wrote in a 2021 review in the Journal of Experimental Biology. For example, when fish find themselves in unfamiliar environments, they consistently join the larger of two schools of fish.
The approximate number system falls short, however, when the quantities being compared are relatively similar, relatively large or both. Comparing two piles, one with five coins and the other with nine coins, is easy. But scale those piles up to 900,005 coins and 900,009 coins, and the task becomes impossible. The same goes for when the U.S. death toll from COVID-19 goes from 999,995 to 999,999.
We can improve our number sense — to a point. The bridge between fuzzy approximation and precision math appears to be language, Núñez says.
Because the ability to approximate numbers is universal, every known language has words and phrases to describe inexact quantities, such as a lot, a little and a gazillion. “For example, if a boy is said to have a ‘few’ oranges and a girl ‘many’ oranges, a safe inference — without the need of exact calculations — is that the girl has more oranges than the boy,” Núñez writes in the June 1, 2017 Trends in Cognitive Science.
And most cultures have symbols or words for values in the subitizing range, but not necessarily beyond that point, Núñez says. For instance, across 193 languages in hunting and gathering communities, just 8 percent of Australian languages and 39 percent of African languages have symbols or words beyond five, researchers reported in the 2012 Linguistic Typology. The origin of counting beyond subitizing range, and the complex math that follows, such as algebra and calculus, remains unclear. Núñez and others suspect that cultural practices and preoccupations, such as keeping track of agricultural products and raw materials for trade, gave rise to more complex numerical abilities. As math abilities developed, people became adept at conceptualizing numbers up to 1,000 due to lived experience, says cognitive scientist David Landy. Those experiences could include getting older, traveling long distances or counting large quantities of money.
Regular experiences, however, rarely hit the really big number range, says Landy, a senior data scientist at Netflix in San Francisco. Most people, he says, “get no experience like that for a million.”
Numbers that exceed our experience perplex us. When big numbers exceed our lived experiences, or move into the abstract, our minds struggle to cope. For instance, with number sense and language so deeply intertwined, those seemingly benign commas in big numbers and linguistic transitions from thousands to millions or millions to billions, can trip us up in surprising ways.
When Landy and his team ask participants, often undergraduates or adults recruited online, to place numbers along a number line, they find that people are very accurate at placing numbers between 1 and 1,000. They also perform well from 1 million to 900 million. But when they change the number line endpoints to, say, 1,000 and 1 billion, people struggle at the 1 million point, Landy and colleagues reported in the March 2017 Cognitive Science.
“Half the people are putting 1 million closer to 500 million than 1,000,” Landy says. “They just don’t know how big a million is.” Landy believes that as people transition from their lived experiences in the thousands to the more abstract world of 1 million, they reset their mental number lines. In other words, 1 million feels akin to one, 2 million to two and so on.
Changing our notations might prevent that reset, Landy says. “You might be better off writing ‘a thousand thousand’ than ‘1 million’ because that’s easier to compare to 900,000.” The British used to do this with what people in the U.S. now call a trillion, which they called a million million.
Without comprehension, extreme numbers foster apathy. Our inability to grasp big numbers means that stories featuring a single victim, often a child, are more likely to grab our attention than a massive crisis — a phenomenon known as the identifiable victim effect.
For instance, on September 2, 2015, Aylan Kurdi, a 2-year-old refugee of the Syrian Civil War, was on a boat with his family crossing the Mediterranean Sea. Conservative estimates at the time put the war’s death toll at around 250,000 people. Kurdi’s family was trying to escape, but when their overcrowded boat capsized, the boy drowned, along with his brother and mother. The next day a picture of the infant lying dead on a Turkish beach hit the front pages of newspapers around the world.
No death up until that point had elicited public outcry. That photograph of a single innocent victim, however, proved a catalyst for action. Charitable contributions to the Swedish Red Cross, which had created a fund for Syrian refugees in August 2015, skyrocketed. In the week leading up to the photo’s appearance, daily donations averaged 30,000 Swedish krona, or roughly $3,000 today; in the week after the photo appeared, daily donations averaged 2 million Swedish krona, or roughly $198,500. Paul Slovic, of the University of Oregon, Eugene, Daniel Västfjäll, of Linköping University, Sweden, and colleagues reported those results in 2017 in Proceedings of the National Academy of Sciences. Earlier research shows that charitable giving, essentially a proxy for compassion, decreases even when the number of victims goes from one to two. The flip side, however, is that psychologists and others can use humans’ tendency to latch onto iconic victims to reframe large tragedies, says Deborah Small, a psychologist at the University of Pennsylvania.
Some research suggests that this power of one need not focus on a single individual. For instance, when people were asked to make hypothetical donations to save 200,000 birds or a flock of 200,000 birds, people gave more money to the flock than the individual birds, researchers reported in the 2011 E-European Advances in Consumer Research.
Framing the current tragedy in terms of a single unit likewise makes sense, Västfjäll says. Many people react differently, he says, to hearing ‘1 million U.S. citizens dead of COVID’ vs. ‘1 million people, roughly the equivalent of the entire city of San José, Calif., have died from COVID.’
Milestones do still matter, even if we can’t feel them. Kurdi’s photo sparked an outpouring of empathy. But six weeks after it was published, donations had dropped to prephoto levels — what Västfjäll calls “the half-life of empathy.”
That fade to apathy over time exemplifies a phenomenon known as hedonic adaptation, or humans’ ability to eventually adjust to any situation, no matter how dire. We see this adaptation with the pandemic, Small says. A virus that seemed terrifying in March 2020 now exists in the background. In the United States, masks have come off and people are again going out to dinner and attending large social events (SN: 5/17/22).
One of the things that can penetrate this apathy, however, is humans’ tendency to latch onto milestones — like 1 million dead from COVID-19, Landy says. “We have lots of experience with small quantities carrying emotional impact. They are meaningful in our lives. But in order to think about big numbers, we have to go to a more milestone frame of mind.” That’s because our minds have not caught up to this moment in time where big numbers are everywhere.
And even if we cannot feel that 1 million milestone, or mourn the more than 6 million dead worldwide, the fact that we even have the language for numbers beyond just 4 or 5 is a feat of human imagination, Marghetis says. “Maybe we are not having an emotional response to [that number], but at least we can call it out. That’s an amazing power that language gives us.”