Readers respond to the SN 10, and awards for Science News

Science’s human side
In “The SN 10: Scientists to Watch” (SN: 10/1/16, p. 16), Science News recognized 10 up-and-coming scientists across a range of scientific fields who will be answering big questions in the decades to come.

Barry Maletzky thought that highlighting 10 young scientists may have been unfair and detrimental to other researchers. “By drawing attention to just 10, I wonder if you are thereby discouraging others who may not make the headlines but whose basic research may lead the way toward important discoveries in the future,” Maletzky said. He also pointed out that scientific progress is made “through the tedious and often under-publicized work of a number of investigators working barely noticed through the years.”
It’s true that in science journalism, as with all journalism, what you choose to cover can matter as much as how you choose to cover it, says Elizabeth Quill, Science News’ enterprise editor, who led the SN 10 project. Science News editors and writers take this responsibility seriously, which is why Science News avoided terms like “top,” “best” and other superlatives. Whenever possible, the names of mentors and collaborators were also included in the stories. “We recognize the dangers in calling out specific individuals, but we believe the rewards outweigh the risks,” Quill says. “The majority of Science News focuses on the data and the process. But here we see a different side. We are showing science as a human endeavor. We hope this list inspires all young scientists to follow their passion and their curiosity. But we also hope to do what we do best — inform our readers about new and interesting science.”

Kenneth Abate was disappointed by “The SN 10: Scientists to Watch” profiles and questioned how Science News chose the researchers. “The issue is probably a nice piece of advertising for the individuals to further their careers,” Abate said. However, it “is of little value to the scientific community nor does it contribute to the knowledge bank of those scientists or would-be scientist readers.”
Choosing is never easy, but thankfully Science News staff didn’t do it alone. Every featured scientist was nominated by a Nobel laureate or recently elected member of the National Academy of Sciences on the basis of the scientist’s contributions to the field and promise for future contributions. As they do with any news or feature story, Science News editors and writers selected the final list of scientists by looking at who was doing novel, interesting and important work. As readers point out, the list could have easily been much, much longer.

Cool it
The next big thing in high-tech clothing may be a plastic material similar to kitchen cling wrap that vents body heat, Meghan Rosen reported in “New fabric could make cool clothes” (SN: 10/1/16, p. 9).

Online reader Karl Chwe pointed out one potential drawback to the new material: “It is just a thin plastic film with tiny holes, and the holes aren’t big enough to allow water vapor to escape easily, so it doesn’t allow evaporative cooling,” he wrote. Chwe suggested that it might be better to wear fewer clothes.

Actually, the nanopores are permeable to water vapor, the authors reported. “In this regard, the new fabric is comparable to cotton,” Rosen says. “Without the nanopores, the fabric would be a literal sweat suit; it’s completely nonpermeable.” But even with pores, the fabric doesn’t quite feel like normal clothes just yet. Weaving the fibers into a textile could help. Still, when it comes to evaporative cooling, Rosen says, wearing fewer clothes might be the simplest solution of all.

Correction
“A gut check gets personal” (SN: 10/1/16, p. 19) profiles Lawrence David, a computational biologist who studies the human gut microbiome at Duke University. David’s wife is a psychiatrist, not a psychologist as was incorrectly stated in the article.

Blue leaves help begonias harvest energy in low light

Iridescent blue leaves on some begonias aren’t just for show — they help the plants harvest energy in low light.

The begonias’ chloroplasts, which use photosynthesis to convert light into fuel, have a repeating structure that allows the plants to efficiently soak up light. This comes in handy for a plant that lives on the shady forest floor. The structure acts as a “photonic crystal” that preferentially reflects blue wavelengths of light and helps the plant better absorb reds and greens for energy production, scientists report October 24 in Nature Plants.
Colors in plants and animals typically come from pigments, chemicals that absorb certain wavelengths, or colors, of light. In rare cases, plants and animals derive their hues from microstructures. In begonias, such tiny, regular architectures can be found within certain chloroplasts, known as iridoplasts. As light bounces off these structures within an iridoplast, the reflected waves interfere at certain wavelengths (SN: 6/7/08, p. 26), creating a blue, iridescent shimmer.
Those structured chloroplasts also offer a survival benefit, the new research shows: They help the plants collect light. In a hybrid of two species — Begonia grandis and Begonia pavonina — the structures enhance the absorption of green and red wavelengths by concentrating these rays on light-absorbing compartments within the iridoplasts. Importantly, the structures slow the light. The “group velocity,” or the speed of a packet of light waves, is decreased due to interference between incoming and reflected light. The slowdown gives the plant more time to absorb precious sunbeams.

“These iridoplasts can basically photosynthesize at low-light levels where normal chloroplasts just simply could not photosynthesize,” says study coauthor Heather Whitney, a plant biologist at the University of Bristol in England. Iridoplasts, however, can’t hold their own in bright light. So begonias also have standard chloroplasts, which provide energy in plentiful sunshine. Iridoplasts act like “a backup generator” in dim conditions, Whitney says.

Other plants have structured chloroplasts, too, so begonias might not be alone in their feats of light manipulation. “Plants can’t really run away from their problems,” Whitney says. Instead, they have to be crafty enough to survive where they stand.

For some salamanders, finding a mate is a marathon

When looking for love, some small-mouthed salamanders can really go the distance.

These intrepid amphibians (Ambystoma texanum) will risk death and dehydration to travel almost nine kilometers on average and as far as 14 to find a mate, researchers report December 20 in Functional Ecology. But all-female populations of a closely related group of salamanders that reproduce by cloning can’t go nearly as far.

Scientists tested the amphibians’ endurance on tiny treadmills. Then the team analyzed genetic differences between salamanders in patches of Ohio wetlands to see how far the amphibians might roam in the wild. Unisexual salamanders could only go a quarter of the treadmill distance that the small-mouthed salamanders could. And in the wild, they only dispersed about half as far from the pools where they were born.
By making the treacherous trek to a different pool to mate, A. texanum salamanders can mix up their genes and keep healthy variation in each population. Unisexual salamanders may have less stamina because they don’t mate in the usual way. Instead of searching for the perfect partner, they steal sperm from nearby male salamanders of different species. The sperm kick-start egg production but rarely actually fertilize eggs; only occasionally does a male’s DNA sneak into a female’s offspring.

Ditching the guys can be efficient — every member of an all-female population can give birth, and that means more babies. But it seems that going it alone has drawbacks, too: These salamanders’ poorer endurance could be a disadvantage if environmental changes forced them to colonize new territory.

New form of hydrogen created

Scientists have produced a new form of hydrogen in the lab — negatively charged hydrogen clusters.

Each cluster consists of hydrogen molecules arranged around a negatively charged hydrogen ion — a single hydrogen atom with an extra electron — at temperatures near absolute zero, the researchers report in the Dec. 30 Physical Review Letters. Similar, positively charged ion clusters have previously been found, but this is the first time scientists have seen negative hydrogen cluster ions beyond the simplest possible pairing of one molecule and one ion.
Physicist Michael Renzler of the University of Innsbruck in Austria and colleagues infused tiny droplets of liquid helium with hydrogen gas. Then, the scientists bombarded the droplets with a beam of electrons, which converted some hydrogen molecules into negatively charged hydrogen ions. Neighboring hydrogen molecules (two bonded hydrogen atoms) clustered around the ion, in groups of a few molecules to over 60.

The scientists also determined the geometric structures of the clusters. Hydrogen molecules organized into shells that surrounded the central ion. Clusters were most stable, and most common, when molecules filled shells to their capacity. In the first shell, for example, the cluster formed an icosahedron — a 3-D shape with 12 vertices — when 12 molecules filled this shell.

In space, hydrogen cluster ions might form naturally in cold, dense clouds of hydrogen or in atmospheres of gas giant planets.

Size matters to lizards, but numbers may not

The quantitative abilities of lizards may have their limits.

From horses to salamanders, lots of different species display some form of number sense, but the phenomenon hasn’t been investigated in reptiles. So a team of researchers in Italy set up two experiments for 27 ruin lizards (Podarcis sicula) collected from walls on the University of Ferrara’s campus. In the first test, the team served up two house fly larvae of varying sizes. Lizards consistently chose to scarf down bigger maggots.

Then in the second experiment, the researchers gave lizards a choice between different numbers of larvae that were all the same size. The lizards didn’t show a preference. While the data suggest that the reptiles do discriminate between larger and smaller prey, they don’t distinguish between higher and lower numbers of maggots in a meal, the scientists report April 12 in Biology Letters.

The researchers cite two potential explanations for the discrepancy. Selecting larger prey rather than more prey might sometimes be advantageous for a predator. Or reptiles simply lack the numerical know-how seen in vertebrate relatives, such as fish.

Editor’s note: This story was updated April 17, 2017, to replace the previous image of a Podarcis muralis lizard with one that shows P. sicula, the species used in the study.

Ancient attack marks show ocean predators got scarier

In pumped-up sequels for scary beach movies, each predator is bigger than the last. Turns out that predators in real-world oceans may have upsized over time, too.

Attack holes in nearly 7,000 fossil shells suggest that drilling predators have outpaced their prey in evolving ever larger bodies and weapons, says paleontologist Adiël Klompmaker of the University of California, Berkeley. The ability to drill through a seashell lets predatory snails, octopuses, one-celled amoeba-like forams and other hungry beasts reach the soft meat despite prey armor. Millions of years later, CSI Paleontology can use these drill holes to test big evolutionary ideas about the power of predators.
“Predators got bigger — three words!” is Klompmaker’s bullet point for the work. Over the last 450 million years or so, drill holes have grown in average size from 0.35 millimeters to 3.25 millimeters, Klompmaker and an international team report June 16 in Science. Larger holes generally mean larger attackers, the researchers say, after looking at 556 modern drillers and the size of their attack holes.

Prey changed over millennia, too, but there’s no evidence for a shift in body size. The ratio of drill-hole size to prey size became 67 times greater over time, the researchers conclude.

It’s “the rise of the bullies,” says coauthor Michal Kowalewski of the University of Florida in Gainesville.

All these data on shell holes allow researchers to test a key part of what’s called the escalation hypothesis. In 1987, Geerat Vermeij proposed a top-down view of evolutionary change, where predators, competitors and other enemies growing ever more powerful drive the biggest changes in their victims. This wasn’t so much an arms race between predators trading tit for tat with their prey as a long domination of underdogs repeatedly stomped by disproportionate menace. (Unless the prey somehow flips the relationship and can do deadly harm in return.) Vermeij, now at the University of California, Davis, and others have drawn on escalating threats to explain prey evolutionary innovations in thick shells, spines and spikes, mobility, burrowing lifestyles and toxins.
One aspect of escalation scenarios has been especially hard to test: the idea that predators can become more dangerous and a stronger evolutionary force over time. Drill holes suggesting bigger, more powerful attackers allowed a rare way of exploring the idea, Klompmaker says. He now reads the deep history as showing predators escalated in size, but prey didn’t.

The energetics worked out, in large part, because early hard-shelled prey called brachiopods — a bit like clams but with one shell-half larger than the other — became scarcer over time, while clams and their fellow mollusks grew abundant. Mollusks typically have more flesh inside their shells than brachiopods, and prey overall grew denser on the ocean bottom. Killer drillers, able to dine at this buffet, could thus support bigger bodies even when prey size wasn’t rising, too.

Prey don’t make drilling easy, Klompmaker says. An hour’s work gets a typical modern predatory snail only about 0.01 to 0.02 millimeters deeper into a mollusk shell. So finally striking lunch could take days of effort with the thickest shells. And that’s with specialty equipment: A snail alternates grinding away using a hard, rasplike driller and then switching to its accessory boring organ that releases acids and enzymes, weakening the drilling spot for the next bout.

The role of such animal clashes in evolution has been notoriously difficult to study, says marine ecologist Nick Dulvy of Simon Fraser University in Burnaby, Canada. Nutrients, climate and other factors that don’t swim away into the blue are much easier to measure. Even after a robust century of ecological study, “the discoveries that otters propped up kelp forests, triggerfishes garden coral reefs, and wolves and cougars create lush diverse watersheds are comparatively recent,” Dulvy says. Until the new drill-hole study, he could think of only one earlier batch of evidence (crabs preying on mollusks) for the long rise of predators as an evolutionary force.

The story from drill holes, says Vermeij, is “very convincing.”

Moms tweak the timbre of their voice when talking to their babies

Voices carry so much information. Joy and anger, desires, comfort, vocabulary lessons. As babies learn about their world, the voice of their mother is a particularly powerful tool. One way mothers wield that tool is by speaking in the often ridiculous, occasionally condescending baby talk.

Also called “motherese,” this is a high-pitched, exaggerated language full of short, slow phrases and big vocal swoops. And when confronted with a tiny human, pretty much everybody — not just mothers, fathers and grandparents — instinctively does it.

Now, a study has turned up another way mothers modulate their voice during baby talk. Instead of focusing on changes such as pitch and rhythm, the researchers focused on timbre, the “color” or quality of a sound.

Timbre is a little bit nebulous, kind of a “know it when you hear it” sort of thing. For instance, the timbre of a reedy clarinet differs from a bombastic trumpet, even when both instruments are hitting the same note. The same is true for voices: When you hear the song “Hurt,” you don’t need to check whether it’s Nine Inch Nails’ Trent Reznor or Johnny Cash singing it. The vocal fingerprints make it obvious.
It turns out that timbre isn’t set in stone. People — mothers, in particular — change their timbre, depending on whether they’re talking to their baby or to an adult, scientists report online October 12 in Current Biology.

For the study, 12 English-speaking moms brought their babies into a Princeton lab. Researchers recorded the women talking to or reading to their 7- to 12-month old babies, and talking with an adult.
An algorithm sorted through timbre data taken from both baby- and adult-directed speech, and used this input to make a mathematical classifier. Based on snippets of speech, the classifier then could tell whether a mother was talking with an adult or with her baby. The timbre differences between baby- and adult-directed speech were obvious enough that a computer program could tell them apart.

Similar timbre shifts were obvious in other languages, too, the researchers found. These baby-directed shifts happened in 12 different women who spoke Cantonese, French, German, Hebrew, Hungarian, Polish, Russian, Mandarin or Spanish — a consistency that suggests this aspect of baby talk is universal.

Defined mathematically, these timbre shifts were consistent across women and across languages, but it’s still not clear what vocal qualities drove the change. “It likely combines several features, such as brightness, breathiness, purity or nasality,” says study coauthor Elise Piazza, a cognitive neuroscientist at Princeton University. She and her colleagues plan on studying these attributes to see whether babies pay more attention to some of them.

It’s not yet known whether babies perceive and use the timbre information from their mother. Babies recognize their mother’s voice; it’s possible they recognize their mother’s baby-directed timbre, too. Babies can tell timbre differences between musical instruments, so they can probably detect timbre differences in spoken language, Piazza says.
The work “highlights a new cue that mothers implicitly use,” Piazza says. The purpose of this cue isn’t clear yet, but the researchers suspect that the timbre change may emotionally engage babies and help them learn language.

People may not reserve timbre shifts just for babies, Piazza points out. Politicians talking to voters, middle school teachers talking to a classroom, and lovers whispering to each other may all tweak their timbre to convey … something.